Я хотел бы измерить производительность моделей, просмотрев AUC или Точность. В поиске сетки я получаю результаты с residual deviance
, как я могу сказать, что сетка глубокого обучения h2o имеет AUC вместо остаточного отклонения и представляет результаты так же хорошо, как тот, который приведен ниже?Как я могу сказать, что сетка глубокого обучения h2o имеет AUC вместо остаточного отклонения
train <- read.table(text = "target birds wolfs snakes
0 9 7 a
0 8 4 b
1 2 8 c
1 2 3 a
1 8 3 a
0 1 2 a
0 7 1 b
0 1 5 c
1 9 7 c
1 8 7 c
0 2 7 b
1 2 3 b
1 6 3 c
0 1 1 a
0 3 9 a
1 1 1 b ",header = TRUE)
trainHex <- as.h2o(train)
g <- h2o.grid("deeplearning",
hyper_params = list(
seed = c(123456789,12345678,1234567),
activation = c("Rectifier", "Tanh", "TanhWithDropout", "RectifierWithDropout", "Maxout", "MaxoutWithDropout")
),
reproducible = TRUE,
x = 2:4,
y = 1,
training_frame = trainHex,
validation_frame = trainHex,
epochs = 50,
)
g
model_ids <- [email protected]_table
model_ids<-as.data.frame(model_ids)
В таблице результатов, которые я получил:
Hyper-Parameter Search Summary: ordered by increasing residual_deviance
activation seed model_ids residual_deviance
1 Maxout 12345678 Grid_DeepLearning_train_model_R_1483217086840_112_model_10 0.07243775676256235
2 Maxout 1234567 Grid_DeepLearning_train_model_R_1483217086840_112_model_16 0.10060885040861599
3 MaxoutWithDropout 123456789 Grid_DeepLearning_train_model_R_1483217086840_112_model_5 0.1706496158406441
4 Maxout 123456789 Grid_DeepLearning_train_model_R_1483217086840_112_model_4 0.17243125875659948
5 Tanh 123456789 Grid_DeepLearning_train_model_R_1483217086840_112_model_1 0.18326527198894926
6 Tanh 12345678 Grid_DeepLearning_train_model_R_1483217086840_112_model_7 0.18763395264761593
7 Tanh 1234567 Grid_DeepLearning_train_model_R_1483217086840_112_model_13 0.18791531211136187
8 TanhWithDropout 123456789 Grid_DeepLearning_train_model_R_1483217086840_112_model_2 0.19808063817007837
9 TanhWithDropout 12345678 Grid_DeepLearning_train_model_R_1483217086840_112_model_8 0.19815190962052193
10 TanhWithDropout 1234567 Grid_DeepLearning_train_model_R_1483217086840_112_model_14 0.19832946889767458
11 Rectifier 123456789 Grid_DeepLearning_train_model_R_1483217086840_112_model_0 0.20679125165086842
12 MaxoutWithDropout 1234567 Grid_DeepLearning_train_model_R_1483217086840_112_model_17 0.21971759565380736
13 RectifierWithDropout 123456789 Grid_DeepLearning_train_model_R_1483217086840_112_model_3 0.22337599298253263
14 MaxoutWithDropout 12345678 Grid_DeepLearning_train_model_R_1483217086840_112_model_11 0.22440661112729862
15 RectifierWithDropout 1234567 Grid_DeepLearning_train_model_R_1483217086840_112_model_15 0.2284671685474275
16 RectifierWithDropout 12345678 Grid_DeepLearning_train_model_R_1483217086840_112_model_9 0.23163744415703522
17 Rectifier 1234567 Grid_DeepLearning_train_model_R_1483217086840_112_model_12 0.2516917276707789
18 Rectifier 12345678 Grid_DeepLearning_train_model_R_1483217086840_112_model_6 0.2642221616447725
BTW, установка 'validation_frame' будет такой же, как' training_frame', является поведением по умолчанию, поэтому нет необходимости его указывать. Имейте в виду, что, не применяя валидационные и тестовые наборы данных, вы оптимизируете для глубоких параметров обучения, которые лучше всего подходят. Я даже не уверен, что вы узнаете о влиянии случайных семян на изменение результатов, может быть применимо к невидимым данным. (Конечно, это может быть интересный эксперимент: например, я сделал это раньше, чтобы увидеть, как мало скрытых узлов/слоев/эпох необходимы, чтобы точно соответствовать данным.) –