Я пытаюсь выполнить миграцию проблемы с усилителем, которая поставляется в исходном коде исходного кода Ipopt в качестве примера. У меня возникают проблемы с конечным условием (до конечной итерации), а также с функцией стоимости (свести к минимуму конечное время).Реформирование примера автомобиля AMPL
Может кто-нибудь помочь мне пересмотреть следующую модель?
# min tf
# dx/dt = 0
# dv/dt = a - R*v^2
# x(0) = 0; x(tf) = 100
# v(0) = 0; v(tf) = 0
# -3 <= a <= 1 (a is the control variable)
#!Python3.5
from pyomo.environ import *
from pyomo.dae import *
N = 20;
T = 10;
L = 100;
m = ConcreteModel()
# Parameters
m.R = Param(initialize=0.001)
# Variables
def x_init(m, i):
return i*L/N
m.t = ContinuousSet(bounds=(0,1000))
m.x = Var(m.t, bounds=(0,None), initialize=x_init)
m.v = Var(m.t, bounds=(0,None), initialize=L/T)
m.a = Var(m.t, bounds=(-3.0,1.0), initialize=0)
# Derivatives
m.dxdt = DerivativeVar(m.x, wrt=m.t)
m.dvdt = DerivativeVar(m.v, wrt=m.t)
# Objetives
m.obj = Objective(expr=m.t[N])
# DAE
def _ode1(m, i):
if i==0:
return Constraint.Skip
return m.dxdt[i] == m.v[i]
m.ode1 = Constraint(m.t, rule=_ode1)
def _ode2(m, i):
if i==0:
return Constraint.Skip
return m.dvdt[i] == m.a[i] - m.R*m.v[i]**2
m.ode2 = Constraint(m.t, rule=_ode2)
# Constraints
def _init(m):
yield m.x[0] == 0
yield m.v[0] == 0
yield ConstraintList.End
m.init = ConstraintList(rule=_init)
'''
def _end(m, i):
if i==N:
return m.x[i] == L amd m.v[i] == 0
return Constraint.Skip
m.end = ConstraintList(rule=_end)
'''
# Discretize
discretizer = TransformationFactory('dae.finite_difference')
discretizer.apply_to(m, nfe=N, wrt=m.t, scheme='BACKWARD')
# Solve
solver = SolverFactory('ipopt', executable='C:\\EXTERNOS\\COIN-OR\\win32-msvc12\\bin\\ipopt')
results = solver.solve(m, tee=True)
Добро пожаловать в переполнение стека! См. [Ask] и [mcve]. – Mat