2016-06-23 1 views
0

Привет Я пытаюсь запустить conv. нейронная сеть добавлена ​​из учебника MINST2 в тензорном потоке. я имею следующую ошибку, но я не уверен, что происходит:tensorflow.python.framework.errors.OutOfRangeError:

W tensorflow/core/framework/op_kernel.cc:909] Invalid argument: Shape mismatch in tuple component 0. Expected [784], got [6272] 
W tensorflow/core/framework/op_kernel.cc:909] Invalid argument: Shape mismatch in tuple component 0. Expected [784], got [6272] 
Traceback (most recent call last): 
    File "4_Treino_Rede_Neural.py", line 161, in <module> 
    train_accuracy = accuracy.eval(feed_dict={keep_prob: 1.0}) 
    File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 555, in eval 
    return _eval_using_default_session(self, feed_dict, self.graph, session) 
    File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 3498, in _eval_using_default_session 
    return session.run(tensors, feed_dict) 
    File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 372, in run 
    run_metadata_ptr) 
    File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 636, in _run 
    feed_dict_string, options, run_metadata) 
    File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 708, in _do_run 
    target_list, options, run_metadata) 
    File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 728, in _do_call 
    raise type(e)(node_def, op, message) 
tensorflow.python.framework.errors.OutOfRangeError: RandomShuffleQueue '_0_input/shuffle_batch/random_shuffle_queue' is closed and has insufficient elements (requested 100, current size 0) 
     [[Node: input/shuffle_batch = QueueDequeueMany[_class=["loc:@input/shuffle_batch/random_shuffle_queue"], component_types=[DT_FLOAT, DT_INT32], timeout_ms=-1, _device="/job:localhost/replica:0/task:0/cpu:0"](input/shuffle_batch/random_shuffle_queue, input/shuffle_batch/n)]] 
Caused by op u'input/shuffle_batch', defined at: 
    File "4_Treino_Rede_Neural.py", line 113, in <module> 
    x, y_ = inputs(train=True, batch_size=FLAGS.batch_size, num_epochs=FLAGS.num_epochs) 
    File "4_Treino_Rede_Neural.py", line 93, in inputs 
    min_after_dequeue=1000) 
    File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/training/input.py", line 779, in shuffle_batch 
    dequeued = queue.dequeue_many(batch_size, name=name) 
    File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/data_flow_ops.py", line 400, in dequeue_many 
    self._queue_ref, n=n, component_types=self._dtypes, name=name) 
    File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/gen_data_flow_ops.py", line 465, in _queue_dequeue_many 
    timeout_ms=timeout_ms, name=name) 
    File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/op_def_library.py", line 704, in apply_op 
    op_def=op_def) 
    File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 2260, in create_op 
    original_op=self._default_original_op, op_def=op_def) 
    File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 1230, in __init__ 
    self._traceback = _extract_stack() 

Моя программа:

from __future__ import absolute_import 
from __future__ import division 
from __future__ import print_function 

import os.path 
import time 

import numpy as np 
import tensorflow as tf 

# Basic model parameters as external flags. 
flags = tf.app.flags 
FLAGS = flags.FLAGS 
flags.DEFINE_integer('num_epochs', 2, 'Number of epochs to run trainer.') 
flags.DEFINE_integer('batch_size', 100, 'Batch size.') 
flags.DEFINE_string('train_dir', '/root/data', 'Directory with the training data.') 
#flags.DEFINE_string('train_dir', '/root/data2', 'Directory with the training data.') 

# Constants used for dealing with the files, matches convert_to_records. 
TRAIN_FILE = 'train.tfrecords' 
VALIDATION_FILE = 'validation.tfrecords' 


# Set-up dos pacotes 
sess = tf.InteractiveSession() 

def read_and_decode(filename_queue): 
    reader = tf.TFRecordReader() 
    _, serialized_example = reader.read(filename_queue) 
    features = tf.parse_single_example(
     serialized_example, 
     # Defaults are not specified since both keys are required. 
     features={ 
      'image_raw': tf.FixedLenFeature([], tf.string), 
      'label': tf.FixedLenFeature([], tf.int64), 
     }) 

    # Convert from a scalar string tensor (whose single string has 
    # length mnist.IMAGE_PIXELS) to a uint8 tensor with shape 
    # [mnist.IMAGE_PIXELS]. 
    image = tf.decode_raw(features['image_raw'], tf.uint8) 
    image.set_shape([784]) 

    # OPTIONAL: Could reshape into a 28x28 image and apply distortions 
    # here. Since we are not applying any distortions in this 
    # example, and the next step expects the image to be flattened 
    # into a vector, we don't bother. 

    # Convert from [0, 255] -> [-0.5, 0.5] floats. 
    image = tf.cast(image, tf.float32) * (1./255) - 0.5 

    # Convert label from a scalar uint8 tensor to an int32 scalar. 
    label = tf.cast(features['label'], tf.int32) 

    return image, label 


def inputs(train, batch_size, num_epochs): 
    """Reads input data num_epochs times. 
    Args: 
    train: Selects between the training (True) and validation (False) data. 
    batch_size: Number of examples per returned batch. 
    num_epochs: Number of times to read the input data, or 0/None to 
     train forever. 
    Returns: 
    A tuple (images, labels), where: 
    * images is a float tensor with shape [batch_size, 30,26,1] 
     in the range [-0.5, 0.5]. 
    * labels is an int32 tensor with shape [batch_size] with the true label, 
     a number in the range [0, char letras). 
    Note that an tf.train.QueueRunner is added to the graph, which 
    must be run using e.g. tf.train.start_queue_runners(). 
    """ 
    if not num_epochs: num_epochs = None 
    filename = os.path.join(FLAGS.train_dir, 
          TRAIN_FILE if train else VALIDATION_FILE) 

    with tf.name_scope('input'): 
    filename_queue = tf.train.string_input_producer(
     [filename], num_epochs=num_epochs) 

    # Even when reading in multiple threads, share the filename 
    # queue. 
    image, label = read_and_decode(filename_queue) 

    # Shuffle the examples and collect them into batch_size batches. 
    # (Internally uses a RandomShuffleQueue.) 
    # We run this in two threads to avoid being a bottleneck. 
    images, sparse_labels = tf.train.shuffle_batch(
     [image, label], batch_size=batch_size, num_threads=2, 
     capacity=1000 + 3 * batch_size, 
     # Ensures a minimum amount of shuffling of examples. 
     min_after_dequeue=1000) 

    return images, sparse_labels 

def weight_variable(shape): 
    initial = tf.truncated_normal(shape, stddev=0.1) 
    return tf.Variable(initial) 

def bias_variable(shape): 
    initial = tf.constant(0.1, shape=shape) 
    return tf.Variable(initial) 

def conv2d(x, W): 
    return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') 

def max_pool_2x2(x): 
    return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], 
         strides=[1, 2, 2, 1], padding='SAME') 

#Variaveis 
x, y_ = inputs(train=True, batch_size=FLAGS.batch_size, num_epochs=FLAGS.num_epochs) 
#onehot_y_ = tf.one_hot(y_, 36, dtype=tf.float32) 
#y_ = tf.string_to_number(y_, out_type=tf.int32) 


#Layer 1 
W_conv1 = weight_variable([5, 5, 1, 32]) 
b_conv1 = bias_variable([32]) 
x_image = tf.reshape(x, [-1,28,28,1]) 
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) 
h_pool1 = max_pool_2x2(h_conv1) 

#Layer 2 
W_conv2 = weight_variable([5, 5, 32, 64]) 
b_conv2 = bias_variable([64]) 
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) 
h_pool2 = max_pool_2x2(h_conv2) 

#Densely Connected Layer 
W_fc1 = weight_variable([7 * 7 * 64, 1024]) 
b_fc1 = bias_variable([1024]) 
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64]) 
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) 

#Dropout - reduz overfitting 
keep_prob = tf.placeholder(tf.float32) 
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) 

#Readout layer 
W_fc2 = weight_variable([1024, 36]) 
b_fc2 = bias_variable([36]) 
#y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2) 
y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2 

#Train and evaluate 
#cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y_conv), reduction_indices=[1])) 
#cross_entropy = tf.reduce_mean(-tf.reduce_sum(onehot_y_ * tf.log(y_conv), reduction_indices=[1])) 
cross_entropy = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(y_conv, y_)) 
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) 
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1)) 
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) 
sess.run(tf.initialize_all_variables()) 

coord = tf.train.Coordinator() 
threads = tf.train.start_queue_runners(sess=sess, coord=coord) 

for i in range(20000): 
    if i%100 == 0: 
    train_accuracy = accuracy.eval(feed_dict={keep_prob: 1.0}) 
    print("step %d, training accuracy %g"%(i, train_accuracy)) 
    train_step.run(feed_dict={keep_prob: 0.5}) 

x, y_ = inputs(train=True, batch_size=2000) 
#y_ = tf.string_to_number(y_, out_type=tf.int32) 
print("test accuracy %g"%accuracy.eval(feed_dict={keep_prob: 1.0})) 

coord.join(threads) 
sess.close() 

Может кто-нибудь объяснить мне, что происходит? И как это исправить?

Спасибо! Марсело V

+0

На самом деле я думаю, что ошибка исходит из того, что вы никогда не создавали очередь для тестового набора. Строка 'x, y_ = input (train = True, batch_size = 2000)' в конце никогда не используется –

+0

Это хорошее наблюдение, но сообщение об ошибке не указывает на этот оп. Указывает на «train_accuracy = precision.eval (feed_dict = {keep_prob: 1.0})» и «x, y_ = входы (поезд = True, batch_size = FLAGS.batch_size, num_epochs = FLAGS.num_epochs). Так как же может быть, что указанная вами линия является проблематичной? –

+0

И посмотрите, пожалуйста, какую-то тренировку перед ошибкой? –

ответ

0

В строке:

filename_queue = tf.train.string_input_producer([filename], num_epochs=num_epochs) 

Вы указываете количество эпох очереди будет работать через имена файлов. documentation объясняет это хорошо:

num_epochs: An integer (optional). If specified, string_input_producer produces each string from num_epochs times before generating an OutOfRange error. If not specified, string_input_producer can cycle through the strings in string_tensor an unlimited number of times.


В flags.DEFINE_integer('num_epochs', 2, 'Number of epochs to run trainer.'), необходимо указать номер по умолчанию эпох 2. Вы должны либо увеличить это, либо удалить аргумент num_epochs в string_input_producer.

+0

Привет, я попытался удалить num_epochs, но появляется та же ошибка, (теперь в строке 161): Traceback (самый последний вызов последнего): Файл "4_Treino_Rede_Neural.py", строка 161, в train_accuracy = accuracy.eval (feed_dict = {keep_prob: 1.0}) tensorflow.python.framework.errors.OutOfRangeError: RandomShuffleQueue '_0_input/shuffle_batch/random_shuffle_queue' закрыт и имеет недостаточно элементов (запрошен 100, текущий размер 0) –

+0

Можете ли вы отредактировать свой пост с помощью новая ошибка и строка, в которой вы ее получили (содержимое строки, а не ее номер) –

+0

Sry: Я имел в виду, что такая же ошибка сохраняется даже с теми изменениями, которые вы предложили. –

1

У меня были аналогичные проблемы в прошлом, и это было связано с тем, что я хранил и читал данные в неправильных типах данных. Например, я сначала передал данные как тип float при преобразовании исходных данных png в tfrecords. Затем, когда я считываю данные из tfrecords, я снова выбрал его как float (предполагая, что данные выходят из uint8. Следовательно, я имел несоответствие 3136 (784 * 4), когда ожидалось 784. Я предполагаю, что это также может быть случай для вас здесь