2015-08-23 3 views
0

У меня есть несколько объектов xts, хранящихся в списке, каждый из которых содержит 1000 строк. Они представляют собой данные регрессионной статистики скользящего окна. Каждый элемент имеет уникальное имя Тикера. Здесь они называются Stock1, 2 ... и т. Д. Для целей тестирования. Строки называются по дате, как и формат xts. Каждый элемент равен размерности. Каждый из них выглядит следующим образом:Как реорганизовать данные из списка по именам ростов в новые данные? R

> tail(testlist$Stock1, n = 3) 
      (Intercept)  rmrf   smb  hml  rmw  cma 
2014-12-29 0.0003223177 1.010215 -0.02164844 -0.3322500 0.07819563 1.106934 
2014-12-30 0.0002631315 1.002356 -0.02351438 -0.3465390 0.05954400 1.118506 
2014-12-31 0.0002837304 1.000084 -0.01619536 -0.3494401 0.06121434 1.124845 
> tail(testlist$Stock2, n = 3) 
      (Intercept)  rmrf  smb   hml  rmw  cma 
2014-12-29 0.0003308951 0.7503819 -0.1967255 -0.10242616 -0.2264914 0.8329570 
2014-12-30 0.0003051495 0.7409709 -0.1899856 -0.07461764 -0.2240448 0.7921883 
2014-12-31 0.0002614874 0.7478099 -0.1833077 -0.06197362 -0.2056615 0.7550211 
> tail(testlist$Stock3, n = 3) 
      (Intercept)  rmrf  smb  hml  rmw  cma 
2014-12-29 -0.0003803988 0.8363603 -0.4153470 0.7459769 -0.7981382 -0.2839360 
2014-12-30 -0.0004121386 0.8352243 -0.4224404 0.7405976 -0.8114066 -0.2790438 
2014-12-31 -0.0004660716 0.8355641 -0.4343012 0.7571033 -0.8057412 -0.3026019 
> tail(testlist$Stock4, n = 3) 
      (Intercept)  rmrf   smb   hml  rmw  cma 
2014-12-29 -0.0008295692 0.9296299 -0.07776571 0.007084297 -0.1377356 0.8038542 
2014-12-30 -0.0007734696 0.9383387 -0.08941983 0.011685507 -0.1092656 0.7863335 
2014-12-31 -0.0007591168 0.9391670 -0.08782070 0.015619229 -0.1083707 0.7924232 

Что мне нужно сделать: Объединить строки по имени и за счет объединения всех данных в моем списке, чтобы получить новый набор данных. Каждый должен выглядеть так:

Name Date  (Intercept)  rmrf  smb  hml  rmw   cma 

Stock1 2014-12-29 0.0003223177 1.010215 -0.02164844 -0.3322500 0.07819563 1.106934 
Stock2 2014-12-29 0.0003308951 0.7503819 -0.1967255 -0.10242616 -0.2264914 0.8329570 
Stock3 2014-12-29 -0.0003803988 0.8363603 -0.4153470 0.7459769 -0.7981382 -0.2839360 
Stock4 2014-12-29 -0.0008295692 0.9296299 -0.07776571 0.007084297 -0.1377356 0.8038542 

Каждый такой элемент не должен быть временным рядом. но статический, причем каждый запас представляет собой значения коэффициента в момент времени «t». В терминах размера каждый элемент должен иметь количество строк, равное количеству запасов в исходном списке.

EDIT, как спросил josilber

> dput(list(Stock1=tail(testlist$Stock1, n = 3), Stock2=tail(testlist$Stock2, n = 3))) 

structure(list(Stock1 = structure(c(0.000322317700198485, 0.000263131488679374, 
0.000283730373928844, 1.01021497011709, 1.00235580055438, 1.00008407331697, 
-0.0216484434660844, -0.023514378867335, -0.0161953614672028, 
-0.332250031553704, -0.346538978804535, -0.349440052163927, 0.078195628743663, 
0.0595439997647003, 0.0612143446991752, 1.1069343396633, 1.11850626745067, 
1.12484530131584), class = c("xts", "zoo"), .indexCLASS = "Date", tclass = "Date", .indexTZ = "UTC", tzone = "UTC", index = structure(c(1419811200, 
1419897600, 1419984000), tzone = "UTC", tclass = "Date"), .Dim = c(3L, 
6L), .Dimnames = list(NULL, c("(Intercept)", "rmrf", "smb", "hml", 
"rmw", "cma"))), Stock2 = structure(c(0.000330895099805035, 0.000305149500450527, 
0.000261487411574969, 0.750381906747217, 0.740970893865186, 0.747809929767095, 
-0.1967254672836, -0.189985607343021, -0.183307667378927, -0.10242615734439, 
-0.0746176364711423, -0.0619736225998069, -0.226491384004977, 
-0.224044849587752, -0.205661480898329, 0.832956994676299, 0.792188348360969, 
0.755021100668421), class = c("xts", "zoo"), .indexCLASS = "Date", tclass = "Date", .indexTZ = "UTC", tzone = "UTC", index = structure(c(1419811200, 
1419897600, 1419984000), tzone = "UTC", tclass = "Date"), .Dim = c(3L, 
6L), .Dimnames = list(NULL, c("(Intercept)", "rmrf", "smb", "hml", 
"rmw", "cma")))), .Names = c("Stock1", "Stock2")) 

Я полностью в темноте. Я рассмотрел некоторые функции, которые могут пригодиться: lapply/также функция merge кажется подходящей, но она работает только на 2 элемента.

Я буду продолжать обновлять этот пост при поиске ответов. Если у кого-то есть какие-либо выводы или он сделал это раньше и может указать в правильном направлении, спасибо!

EDIT

#Flatten data add one more name and put into one data frame 

all_coef_data<- do.call(rbind,Map(cbind, 
        Name=names(testlist), 
        Date=lapply(testlist,function(x) as.Date(as.POSIXct(c(attr(x,'index')),origin='1970-01-01'))), 
        lapply(testlist, as.data.frame) 
)) 

Общий знаменатель в каждой строке, что мне нужно, чтобы выйти является дата. Теперь я разделил DataFrame на Date, используя это. Вывод - это список.

out <- split(all_coef_data , f = all_coef_data$Date) 

выход:

> head(out$'2011-05-23', n=3) 
        Name  Date (Intercept)  rmrf   smb  hml   rmw  cma 
Stock1.2011-05-23 Stock1 2011-05-23 -4.376389e-04 1.103582 -0.21747611 -0.1879211 -0.05849794 -0.1949192 
Stock2.2011-05-23 Stock2 2011-05-23 1.115140e-04 1.198622 0.05422819 0.9998529 0.92141407 -0.8565260 
Stock3.2011-05-23 Stock3 2011-05-23 5.457214e-05 1.303025 0.04705294 0.6897673 -0.19708983 -0.8247877 
> tail(out$'2011-05-23', n=3) 
         Name  Date (Intercept)  rmrf  smb   hml   rmw  cma 
Stock48.2011-05-23 Stock48 2011-05-23 0.0007354997 0.505054 0.1774544 -0.38934089 0.71775909 0.5189329 
Stock49.2011-05-23 Stock49 2011-05-23 0.0004224351 1.304719 0.4511903 -0.64937062 -0.08872941 0.1545058 
Stock50.2011-05-23 Stock50 2011-05-23 0.0003851261 1.020434 -0.1107910 -0.03964192 0.09526658 -0.4961902 
+0

Не могли бы вы представить воспроизводимый пример ваших данных?Например, вероятно, было бы достаточно включить вывод 'dput (list (Stock1 = tail (testlist $ Stock1, n = 3), Stock2 = tail (testlist $ Stock2, n = 3))). – josliber

+0

Теперь он включен. Спасибо. –

ответ

1

Похоже, вы хотите

  1. выравниваться объекты XTS в data.frames с помощью as.data.frame(),
  2. cbind() новых столбцов Name (от названий компонентов списка) и Date (из названий строк xts, которые фактически исходят от index) и, наконец,
  3. rbind() все вместе в единый data.frame.

do.call(rbind,Map(cbind, 
    Name=names(testlist), 
    Date=lapply(testlist,function(x) as.Date(as.POSIXct(c(attr(x,'index')),origin='1970-01-01'))), 
    lapply(testlist,as.data.frame) 
)); 
##      Name  Date (Intercept)  rmrf   smb   hml   rmw  cma 
## Stock1.2014-12-29 Stock1 2014-12-29 0.0003223177 1.0102150 -0.02164844 -0.33225003 0.07819563 1.1069343 
## Stock1.2014-12-30 Stock1 2014-12-30 0.0002631315 1.0023558 -0.02351438 -0.34653898 0.05954400 1.1185063 
## Stock1.2014-12-31 Stock1 2014-12-31 0.0002837304 1.0000841 -0.01619536 -0.34944005 0.06121434 1.1248453 
## Stock2.2014-12-29 Stock2 2014-12-29 0.0003308951 0.7503819 -0.19672547 -0.10242616 -0.22649138 0.8329570 
## Stock2.2014-12-30 Stock2 2014-12-30 0.0003051495 0.7409709 -0.18998561 -0.07461764 -0.22404485 0.7921883 
## Stock2.2014-12-31 Stock2 2014-12-31 0.0002614874 0.7478099 -0.18330767 -0.06197362 -0.20566148 0.7550211 

Если вам не нравятся новые имена строк, вы можете обернуть строку в `rownames<-`(...,NULL).

+0

ваш ответ получил все мои данные в один большой файл. это было очень полезно. Мне также нужно разбить эти данные на несколько наборов. Сегодня я нашел функцию Split, которая помогла завершить загадку. пост был отредактирован с благодарностью. –

1

Вот еще одно решение.

library(xts) 
library(magrittr) 
library(dplyr) 

stock1 = 
    data.frame(a = c(1, 2), b = c(1, 2)) %>% 
    xts(order.by = 
     c("2014-12-29", "2014-12-30") %>% 
     as.Date) 

stock2 = 
    data.frame(a = c(1, 2), b = c(1, 2)) %>% 
    xts(order.by = 
     c("2014-12-29", "2014-12-30") %>% 
     as.Date) 

test = list(stock1 = stock1, stock2 = stock2) 

result = 
    1:length(test) %>% 
    lapply(function(i) 
    test[[i]] %>% 
     as.data.frame %>% 
     mutate(name = names(test)[i], 
      date = rownames(.) %>% as.Date)) %>% 
    bind_rows 

 Смежные вопросы

  • Нет связанных вопросов^_^