Прямо сейчас я запрограммировал несколько параллельных алгоритмов на одном графическом процессоре, но все они имеют ту же проблему, когда я пытаюсь выполнить их на нескольких графических процессорах (например, 3). Проблема в том, что код, выполняемый на одном графическом процессоре, выполняет ровно столько же времени на 3 графических процессорах (не быстрее). Я попытался выполнить с большим количеством данных, попробовал выполнить различные задачи, ничего не помогло. Наконец, я закончил тем, что пытался выполнить самую легкую задачу, такую как сумма элементов, и до сих пор получил эту ужасную ошибку. Вот почему я не считаю, что это проблема конкретного алгоритма, и я чувствую, что в моем коде есть ошибка (или даже мой подход к распараллеливанию кода на нескольких графических процессорах).Запуск ядра OpenCL на нескольких графических процессорах?
Вот файл заголовка для моего класса Parallel.cpp:
#ifndef PARALLEL_H
#define PARALLEL_H
#define __NO_STD_VECTOR // Use cl::vector and cl::string and
#define __NO_STD_STRING // not STL versions, more on this later
#include <CL/cl.h>
class Parallel
{
public:
Parallel();
int executeAttachVectorsKernel(int*, int*, int*, int);
static void getMaxWorkGroupSize(int*, int*, int*);
virtual ~Parallel();
protected:
private:
char* file_contents(const char*, int*);
void getShortInfo(cl_device_id);
int init(void);
cl_platform_id platform;
cl_device_id* devices;
cl_uint num_devices;
cl_command_queue* queues;
int* WGSizes;
int* WGNumbers;
cl_context context;
cl_program program;
cl_kernel kernel;
cl_mem input1;
cl_mem input2;
cl_mem output;
};
#endif // PARALLEL_H
Вот метод инициализации INIT:
int Parallel::init() {
cl_int err;
//Connect to the first platfrom
err = clGetPlatformIDs(1, &platform, NULL);
if (err != CL_SUCCESS) {
cerr << "Error occured while executing clGetPlatformIDs" << endl;
return EXIT_FAILURE;
}
//Get devices number
err = clGetDeviceIDs(platform, CL_DEVICE_TYPE_GPU, 0, NULL, &num_devices);
if (err != CL_SUCCESS) {
cerr << "Error: Failed to create a device group:" << endl;
return EXIT_FAILURE;
}
cout << "NUM DEVICES =" << num_devices << endl;
devices = new cl_device_id[num_devices];
//Get all the GPU devices
err = clGetDeviceIDs(platform, CL_DEVICE_TYPE_GPU, num_devices, devices, NULL);
//Create one context for all the devices
context = clCreateContext(NULL, num_devices, devices, NULL, NULL, &err);
if (!context) {
cerr << "Error: Failed to create a compute context!" << endl;
return EXIT_FAILURE;
}
queues = new cl_command_queue[num_devices];
WGNumbers = new int[num_devices];
WGSizes = new int[num_devices];
for(int i = 0; i < num_devices; i++) {
//Create a command queue for every device
queues[i] = clCreateCommandQueue(context, devices[i], 0, &err);
if (!queues[i]) {
cerr << "Error: Failed to create a command commands!" << endl;
return EXIT_FAILURE;
}
cl_ulong temp;
clGetDeviceInfo(devices[i], CL_DEVICE_MAX_WORK_GROUP_SIZE, sizeof(temp), &temp, NULL);
WGSizes[i] = (int)temp;
clGetDeviceInfo(devices[i], CL_DEVICE_MAX_WORK_ITEM_SIZES, sizeof(temp), &temp, NULL);
WGNumbers[i] = (int)temp;
}
//Translate kernel code into chars
int pl;
size_t program_length;
string path = "./kernel/kernel_av.cl";
char* cSourceCL = file_contents(path.c_str(), &pl);
program_length = (size_t)pl;
//Create a program
program = clCreateProgramWithSource(context, 1,
(const char **) &cSourceCL, &program_length, &err);
if (!program) {
cerr << "Error: Failed to create compute program!" << endl;
return EXIT_FAILURE;
}
//Create an executable
err = clBuildProgram(program, 0, NULL, NULL, NULL, NULL);
if (err != CL_SUCCESS)
{
size_t len;
char buffer[2048];
cerr << "Error: Failed to build program executable!" << endl;
exit(1);
}
// Create the compute kernel in the program
kernel = clCreateKernel(program, "calculate2dim", &err);
if (err != CL_SUCCESS)
{
cerr << "Error: Failed to create compute kernel!" << endl;
exit(1);
}
}
Метод, который выполняет ядро здесь:
int Parallel::executeAttachVectorsKernel(int* data1, int* data2, int* results, int vectors_num) {
cl_int err;
size_t global; // global domain size for our calculation
size_t local; // local domain size for our calculation
int partition = vectors_num/num_devices;
unsigned int count = partition;
input1 = clCreateBuffer(context, CL_MEM_READ_ONLY, sizeof(int) * count, NULL, NULL);
input2 = clCreateBuffer(context, CL_MEM_READ_ONLY, sizeof(int) * count, NULL, NULL);
output = clCreateBuffer(context, CL_MEM_WRITE_ONLY, sizeof(int) * count, NULL, NULL);
if (!input1 || !input2 || !output) {
cerr << "Error: Failed to allocate device memory!" << endl;
exit(1);
}
int** data1_apart = new int*[num_devices];
int** data2_apart = new int*[num_devices];
int** results_apart = new int*[num_devices];
for(int i = 0; i < num_devices; i++) {
cout << "Executing parallel part on GPU " << i + 1 << endl;
cout << "Partition size = " << partition << endl;
data1_apart[i] = new int[partition];
data2_apart[i] = new int[partition];
results_apart[i] = new int[partition];
for(int j = i*partition, k = 0; k < partition; j++, k++) {
data1_apart[i][k] = data1[j];
data2_apart[i][k] = data2[j];
}
//Transfer the input vector into device memory
err = clEnqueueWriteBuffer(queues[i], input1,
CL_TRUE, 0, sizeof(int) * count,
data1_apart[i], 0, NULL, NULL);
err = clEnqueueWriteBuffer(queues[i], input2,
CL_TRUE, 0, sizeof(int) * count,
data2_apart[i], 0, NULL, NULL);
if (err != CL_SUCCESS)
{
cerr << "Error: Failed to write to source array!" << endl;
exit(1);
}
int parameter4 = count/WGNumbers[i];
//Set the arguments to the compute kernel
err = 0;
err = clSetKernelArg(kernel, 0, sizeof(cl_mem), &input1);
err |= clSetKernelArg(kernel, 1, sizeof(cl_mem), &input2);
err |= clSetKernelArg(kernel, 2, sizeof(cl_mem), &output);
err |= clSetKernelArg(kernel, 3, sizeof(int), ¶meter4);
if (err != CL_SUCCESS)
{
cerr << "Error: Failed to set kernel arguments! " << err << endl;
exit(1);
}
global = WGNumbers[i];
local = WGSizes[i];
if(local > global) {
local = global;
}
cout << "global = " << global << " local = " << local << endl;
err = clEnqueueNDRangeKernel(queues[i], kernel,
1, NULL, &global, &local,
0, NULL, NULL);
if (err)
{
cerr << "Error: Failed to execute kernel!" << endl;
return EXIT_FAILURE;
}
}
for(int i = 0; i < num_devices; i++) {
//Wait for all commands to complete
clFinish(queues[i]);
//Read back the results from the device to verify the output
err = clEnqueueReadBuffer(queues[i], output,
CL_TRUE, 0, sizeof(int) * count,
results_apart[i], 0, NULL, NULL);
if (err != CL_SUCCESS)
{
cerr << "Error: Failed to read output array! " << err << endl;
exit(1);
}
for(int j = 0; j < partition; j++) {
results[i*partition + j] = results_apart[i][j];
}
delete [] data1_apart[i];
delete [] data2_apart[i];
delete [] results_apart[i];
}
clReleaseMemObject(input1);
clReleaseMemObject(input2);
clReleaseMemObject(output);
delete [] data1_apart;
delete [] data2_apart;
}
Прежде чем отправлять этот вопрос в stackoverflow, я боролся с этой проблемой в течение 2-3 недель, и теперь я действительно кто-то помог, поэтому я буду очень признателен за любые мысли и ответы!
Это то, что я делаю прямо сейчас и почти мгновенно (разница ~ 1 мс) для тяжелых нагрузок (~ 130 мс работы) –