Пять способов вычислить индексы ненулевых являются:
Semi Векторизованных петля: Загрузить вектор SIMD с гольцов, сравнить с нулем и применить movemask. Используйте небольшой скалярный цикл, если любой из символов отличен от нуля (также предлагается @stgatilov). Это хорошо работает для очень редких массивов. Функция arr2ind_movmsk
в приведенном ниже коде использует инструкции BMI1 для скалярной петли.
Векторизованный цикл: процессоры Intel Haswell и более новая поддержка наборов команд BMI1 и BMI2. BMI2 содержит инструкция pext
(Parallel bits extract, see wikipedia link), , которая оказывается полезной здесь. См. arr2ind_pext
в приведенном ниже коде.
Классический скалярный цикл с оператором if: arr2ind_if
.
Скалярная петля без веток: arr2ind_cmov
.
Таблица поиска: @stgatilov показывает, что вместо команд pdep и других целых чисел можно использовать таблицу поиска . Это может работать хорошо, однако таблица поиска довольно велика: она не подходит для кеша L1. Не тестировалось здесь. См. Также обсуждение here.
/*
gcc -O3 -Wall -m64 -mavx2 -fopenmp -march=broadwell -std=c99 -falign-loops=16 sprs_char2ind.c
example: Test different methods with an array a of size 20000 and approximate 25/1024*100%=2.4% nonzeros:
./a.out 20000 25
*/
#include <stdio.h>
#include <immintrin.h>
#include <stdint.h>
#include <omp.h>
#include <string.h>
__attribute__ ((noinline)) int arr2ind_movmsk(const unsigned char * restrict a, int n, int * restrict ind, int * m){
int i, m0, k;
__m256i msk;
m0=0;
for (i=0;i<n;i=i+32){ /* Load 32 bytes and compare with zero: */
msk=_mm256_cmpeq_epi8(_mm256_load_si256((__m256i *)&a[i]),_mm256_setzero_si256());
k=_mm256_movemask_epi8(msk);
k=~k; /* Search for nonzero bits instead of zero bits. */
while (k){
ind[m0]=i+_tzcnt_u32(k); /* Count the number of trailing zero bits in k. */
m0++;
k=_blsr_u32(k); /* Clear the lowest set bit in k. */
}
}
*m=m0;
return 0;
}
__attribute__ ((noinline)) int arr2ind_pext(const unsigned char * restrict a, int n, int * restrict ind, int * m){
int i, m0;
uint64_t cntr_const = 0xFEDCBA;
__m256i shft = _mm256_set_epi64x(0x04,0x00,0x04,0x00);
__m256i vmsk = _mm256_set1_epi8(0x0F);
__m256i cnst16 = _mm256_set1_epi32(16);
__m256i shf_lo = _mm256_set_epi8(0x80,0x80,0x80,0x0B, 0x80,0x80,0x80,0x03, 0x80,0x80,0x80,0x0A, 0x80,0x80,0x80,0x02,
0x80,0x80,0x80,0x09, 0x80,0x80,0x80,0x01, 0x80,0x80,0x80,0x08, 0x80,0x80,0x80,0x00);
__m256i shf_hi = _mm256_set_epi8(0x80,0x80,0x80,0x0F, 0x80,0x80,0x80,0x07, 0x80,0x80,0x80,0x0E, 0x80,0x80,0x80,0x06,
0x80,0x80,0x80,0x0D, 0x80,0x80,0x80,0x05, 0x80,0x80,0x80,0x0C, 0x80,0x80,0x80,0x04);
__m128i pshufbcnst = _mm_set_epi8(0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80, 0x0E,0x0C,0x0A,0x08,0x06,0x04,0x02,0x00);
__m256i i_vec = _mm256_setzero_si256();
m0=0;
for (i=0;i<n;i=i+16){
__m128i v = _mm_load_si128((__m128i *)&a[i]); /* Load 16 bytes. */
__m128i msk = _mm_cmpeq_epi8(v,_mm_setzero_si128()); /* Generate 16x8 bit mask. */
msk = _mm_srli_epi64(msk,4); /* Pack 16x8 bit mask to 16x4 bit mask. */
msk = _mm_shuffle_epi8(msk,pshufbcnst); /* Pack 16x8 bit mask to 16x4 bit mask. */
msk = _mm_xor_si128(msk,_mm_set1_epi32(-1)); /* Invert 16x4 mask. */
uint64_t msk64 = _mm_cvtsi128_si64x(msk); /* _mm_popcnt_u64 and _pext_u64 work on 64-bit general-purpose registers, not on simd registers.*/
int p = _mm_popcnt_u64(msk64)>>2; /* p is the number of nonzeros in 16 bytes of a. */
uint64_t cntr = _pext_u64(cntr_const,msk64); /* parallel bits extract. cntr contains p 4-bit integers. The 16 4-bit integers in cntr_const are shuffled to the p 4-bit integers that we want */
/* The next 7 intrinsics unpack these p 4-bit integers to p 32-bit integers. */
__m256i cntr256 = _mm256_set1_epi64x(cntr);
cntr256 = _mm256_srlv_epi64(cntr256,shft);
cntr256 = _mm256_and_si256(cntr256,vmsk);
__m256i cntr256_lo = _mm256_shuffle_epi8(cntr256,shf_lo);
__m256i cntr256_hi = _mm256_shuffle_epi8(cntr256,shf_hi);
cntr256_lo = _mm256_add_epi32(i_vec,cntr256_lo);
cntr256_hi = _mm256_add_epi32(i_vec,cntr256_hi);
_mm256_storeu_si256((__m256i *)&ind[m0],cntr256_lo); /* Note that the stores of iteration i and i+16 may overlap. */
_mm256_storeu_si256((__m256i *)&ind[m0+8],cntr256_hi); /* Array ind has to be large enough to avoid segfaults. At most 16 integers are written more than strictly necessary */
m0 = m0+p;
i_vec = _mm256_add_epi32(i_vec,cnst16);
}
*m=m0;
return 0;
}
__attribute__ ((noinline)) int arr2ind_if(const unsigned char * restrict a, int n, int * restrict ind, int * m){
int i, m0;
m0=0;
for (i=0;i<n;i++){
if (a[i]!=0){
ind[m0]=i;
m0=m0+1;
}
}
*m=m0;
return 0;
}
__attribute__((noinline)) int arr2ind_cmov(const unsigned char * restrict a, int n, int * restrict ind, int * m){
int i, m0;
m0=0;
for (i=0;i<n;i++){
ind[m0]=i;
m0=(a[i]==0)? m0 : m0+1; /* Compiles to cmov instruction. */
}
*m=m0;
return 0;
}
__attribute__ ((noinline)) int print_nonz(const unsigned char * restrict a, const int * restrict ind, const int m){
int i;
for (i=0;i<m;i++) printf("i=%d, ind[i]=%d a[ind[i]]=%u\n",i,ind[i],a[ind[i]]);
printf("\n"); fflush(stdout);
return 0;
}
__attribute__ ((noinline)) int print_chk(const unsigned char * restrict a, const int * restrict ind, const int m){
int i; /* Compute a hash to compare the results of different methods. */
unsigned int chk=0;
for (i=0;i<m;i++){
chk=((chk<<1)|(chk>>31))^(ind[i]);
}
printf("chk = %10X\n",chk);
return 0;
}
int main(int argc, char **argv){
int n, i, m;
unsigned int j, k, d;
unsigned char *a;
int *ind;
double t0,t1;
int meth, nrep;
char txt[30];
sscanf(argv[1],"%d",&n); /* Length of array a. */
n=n>>5; /* Adjust n to a multiple of 32. */
n=n<<5;
sscanf(argv[2],"%u",&d); /* The approximate fraction of nonzeros in a is: d/1024 */
printf("n=%d, d=%u\n",n,d);
a=_mm_malloc(n*sizeof(char),32);
ind=_mm_malloc(n*sizeof(int),32);
/* Generate a pseudo random array a. */
j=73659343;
for (i=0;i<n;i++){
j=j*653+1;
k=(j & 0x3FF00)>>8; /* k is a pseudo random number between 0 and 1023 */
if (k<d){
a[i] = (j&0xFE)+1; /* Set a[i] to nonzero. */
}else{
a[i] = 0;
}
}
/* for (i=0;i<n;i++){if (a[i]!=0){printf("i=%d, a[i]=%u\n",i,a[i]);}} printf("\n"); */ /* Uncomment this line to print the nonzeros in a. */
char txt0[]="arr2ind_movmsk: ";
char txt1[]="arr2ind_pext: ";
char txt2[]="arr2ind_if: ";
char txt3[]="arr2ind_cmov: ";
nrep=10000; /* Repeat a function nrep times to make relatively accurate timings possible. */
/* With nrep=1000000: ./a.out 10016 4 ; ./a.out 10016 48 ; ./a.out 10016 519 */
/* With nrep=10000: ./a.out 1000000 5 ; ./a.out 1000000 52 ; ./a.out 1000000 513 */
printf("nrep = \%d \n\n",nrep);
arr2ind_movmsk(a,n,ind,&m); /* Make sure that the arrays a and ind are read and/or written at least one time before benchmarking. */
for (meth=0;meth<4;meth++){
t0=omp_get_wtime();
switch (meth){
case 0: for(i=0;i<nrep;i++) arr2ind_movmsk(a,n,ind,&m); strcpy(txt,txt0); break;
case 1: for(i=0;i<nrep;i++) arr2ind_pext(a,n,ind,&m); strcpy(txt,txt1); break;
case 2: for(i=0;i<nrep;i++) arr2ind_if(a,n,ind,&m); strcpy(txt,txt2); break;
case 3: for(i=0;i<nrep;i++) arr2ind_cmov(a,n,ind,&m); strcpy(txt,txt3); break;
default: ;
}
t1=omp_get_wtime();
printf("method = %s ",txt);
/* print_chk(a,ind,m); */
printf(" elapsed time = %6.2f\n",t1-t0);
}
print_nonz(a, ind, 2); /* Do something with the results */
printf("density = %f %% \n\n",((double)m)/((double)n)*100); /* Actual nonzero density of array a. */
/* print_nonz(a, ind, m); */ /* Uncomment this line to print the indices of the nonzeros. */
return 0;
}
/*
With nrep=1000000:
./a.out 10016 4 ; ./a.out 10016 4 ; ./a.out 10016 48 ; ./a.out 10016 48 ; ./a.out 10016 519 ; ./a.out 10016 519
With nrep=10000:
./a.out 1000000 5 ; ./a.out 1000000 5 ; ./a.out 1000000 52 ; ./a.out 1000000 52 ; ./a.out 1000000 513 ; ./a.out 1000000 513
*/
Код был протестирован с размером массива п = 10016 (данные помещается в кэш L1) и п = 1 млн, с различных ненулевых плотностей около 0,5%, 5% и 50%. Для точного времени функции назывались 1000000 и 10000 раз, соответственно.
Time in seconds, size n=10016, 1e6 function calls. Intel core i5-6500
0.53% 5.1% 50.0%
arr2ind_movmsk: 0.27 0.53 4.89
arr2ind_pext: 1.44 1.59 1.45
arr2ind_if: 5.93 8.95 33.82
arr2ind_cmov: 6.82 6.83 6.82
Time in seconds, size n=1000000, 1e4 function calls.
0.49% 5.1% 50.1%
arr2ind_movmsk: 0.57 2.03 5.37
arr2ind_pext: 1.47 1.47 1.46
arr2ind_if: 5.88 8.98 38.59
arr2ind_cmov: 6.82 6.81 6.81
В этих примерах векторизованные петли быстрее, чем скалярных петель. Производительность arr2ind_movmsk
сильно зависит от плотности a
. Это только быстрее, чем arr2ind_pext
, если плотность достаточно мала. Точка безубыточности также зависит от размера массива n
. Функция 'arr2ind_if' явно страдает от неудачного предсказания ветвления при 50% ненулевой плотности.
Непосредственно, но вы можете 'pcmpeqb' его против нуля, затем' pmovmskb', что в обычном регистре и извлечь первый индекс с помощью 'bsf' (а затем второй и т. Д., Надеюсь, не слишком много) – harold
Вам нужно быть более конкретным, чем просто «SIMD» - какую архитектуру вы планируете?x86, ARM, PowerPC, POWER и некоторые GPGPU имеют разные SIMD-расширения. Также x86 имеет несколько SIMD-расширений: MMX, SSE, SSE2, SSE3, SSSE3, SSE4, AVX, AVX2 и т. Д. (Обратите внимание, что AVX2 имеет инструкции SIMD, которые могут быть полезны в этом контексте). –
@Paul R Извините. Я отредактировал свой вопрос - AVX2 является приемлемым. –