это пример моего набора данных:R: Плавление и объединение данных
ID = c(1, 2, 3, 4)
Allegation = c("A::B::C::V", "A::C", "A::D", "D::E::D")
Disposition = c("Open::Closed::Open", "Closed::Closed", "Open::Open", "Closed::Open")
df <- data.frame(ID,Allegation, Disposition)
ID Allegation Disposition
1 A::B::C::V Open::Closed::Open
2 A::C Closed::Closed
3 A::D Open::Open
4 D::E::D Closed::Open
Я хочу, чтобы следующие результаты:
ID Allegation Disposition Allegation_detail Dispostion_detail
1 A::B::C::V Open::Closed::Open A Open
1 A::B::C::V Open::Closed::Open B Closed
1 A::B::C::V Open::Closed::Open C Open
1 A::B::C::V Open::Closed::Open V NA
2 A::C Closed::Closed A Closed
Я пытался расплавить данные, а затем объединить его, но Я не получить желаемый результат
Это мой подход до сих пор:
#Create column to see num of allegations
df$num_allegations <- (str_count(as.character(df$Allegation), "::") +1)
#Looking max allegations
max(df$num_allegations)
#Expanding allegations
df$Allegation1 <- sapply(strsplit(as.character(df$Allegation), "::", fixed= TRUE), `[`, 1)
df$Allegation2 <- sapply(strsplit(as.character(df$Allegation), "::", fixed= TRUE), `[`, 2)
df$Allegation3 <- sapply(strsplit(as.character(df$Allegation), "::", fixed= TRUE), `[`, 3)
df$Allegation4 <- sapply(strsplit(as.character(df$Allegation), "::", fixed= TRUE), `[`, 4)
#Expanding Disposition
df$Disposition1 <- sapply(strsplit(as.character(df$Disposition), "::", fixed= TRUE), `[`, 1)
df$Disposition2 <- sapply(strsplit(as.character(df$Disposition), "::", fixed= TRUE), `[`, 2)
df$Disposition3 <- sapply(strsplit(as.character(df$Disposition), "::", fixed= TRUE), `[`, 3)
df$Disposition4 <- sapply(strsplit(as.character(df$Disposition), "::", fixed= TRUE), `[`, 4)
#melting data
dfmelt1 <- melt(df[,c(1:8)], id=c("ID", "Allegation", "Disposition", "num_allegations"))
dfmelt2 <- melt(df[,c(1,2,3,4,9,10,11,12)], id=c("ID", "Allegation", "Disposition", "num_allegations"))
colnames(dfmelt2) <- c("ID" ,"Allegation" ,"Disposition","num_allegations", "variable2",
"value2")
Но когда я слияние данных, я получить этот результат, который не то, что я хочу:
merge(dfmelt1, dfmelt2, by = c("ID", "Allegation", "Disposition", "num_allegations"))
ID Allegation Disposition num_allegations variable value variable2 value2
1 A::B::C::V Open::Closed::Open 4 Allegation1 A Disposition1 Open
1 A::B::C::V Open::Closed::Open 4 Allegation1 A Disposition2 Closed
1 A::B::C::V Open::Closed::Open 4 Allegation1 A Disposition3 Open
1 A::B::C::V Open::Closed::Open 4 Allegation1 A Disposition4 <NA>
1 A::B::C::V Open::Closed::Open 4 Allegation2 B Disposition1 Open
1 A::B::C::V Open::Closed::Open 4 Allegation2 B Disposition2 Closed
1 A::B::C::V Open::Closed::Open 4 Allegation2 B Disposition3 Open
1 A::B::C::V Open::Closed::Open 4 Allegation2 B Disposition4 <NA>
1 A::B::C::V Open::Closed::Open 4 Allegation3 C Disposition1 Open
1 A::B::C::V Open::Closed::Open 4 Allegation3 C Disposition2 Closed
1 A::B::C::V Open::Closed::Open 4 Allegation3 C Disposition3 Open
1 A::B::C::V Open::Closed::Open 4 Allegation3 C Disposition4 <NA>
1 A::B::C::V Open::Closed::Open 4 Allegation4 V Disposition1 Open
1 A::B::C::V Open::Closed::Open 4 Allegation4 V Disposition2 Closed
1 A::B::C::V Open::Closed::Open 4 Allegation4 V Disposition3 Open
1 A::B::C::V Open::Closed::Open 4 Allegation4 V Disposition4 <NA>
2 A::C Closed::Closed 2 Allegation1 A Disposition1 Closed
Как я могу объединить, поэтому я получаю Планировка 1, только там, где он говорит Заявление, 1?
Благодаря
даже если это говорит о том, чтобы не писать комментарии как спасибо. Я скажу БОЛЬШОЕ СПАСИБО Sotos, –
Добро пожаловать :) – Sotos