Я хочу установить значение столбца на основе значения этого столбца в предыдущей строке для группы. Затем это обновленное значение будет использоваться в следующей строке.Как перебирать каждую строку Dataframe/RDD в pyspark для группы.?
У меня есть следующие dataframe
id | start_date|sort_date | A | B |
-----------------------------------
1 | 1/1/2017 | 31-01-2015 | 1 | 0 |
1 | 1/1/2017 | 28-02-2015 | 0 | 0 |
1 | 1/1/2017 | 31-03-2015 | 1 | 0 |
1 | 1/1/2017 | 30-04-2015 | 1 | 0 |
1 | 1/1/2017 | 31-05-2015 | 1 | 0 |
1 | 1/1/2017 | 30-06-2015 | 1 | 0 |
1 | 1/1/2017 | 31-07-2015 | 1 | 0 |
1 | 1/1/2017 | 31-08-2015 | 1 | 0 |
1 | 1/1/2017 | 30-09-2015 | 0 | 0 |
2 | 1/1/2017 | 31-10-2015 | 1 | 0 |
2 | 1/1/2017 | 30-11-2015 | 0 | 0 |
2 | 1/1/2017 | 31-12-2015 | 1 | 0 |
2 | 1/1/2017 | 31-01-2016 | 1 | 0 |
2 | 1/1/2017 | 28-02-2016 | 1 | 0 |
2 | 1/1/2017 | 31-03-2016 | 1 | 0 |
2 | 1/1/2017 | 30-04-2016 | 1 | 0 |
2 | 1/1/2017 | 31-05-2016 | 1 | 0 |
2 | 1/1/2017 | 30-06-2016 | 0 | 0 |
Выход:
id | start_date|sort_date | A | B | C
---------------------------------------
1 | 1/1/2017 | 31-01-2015 | 1 | 0 | 1
1 | 1/1/2017 | 28-02-2015 | 0 | 0 | 0
1 | 1/1/2017 | 31-03-2015 | 1 | 0 | 1
1 | 1/1/2017 | 30-04-2015 | 1 | 0 | 2
1 | 1/1/2017 | 31-05-2015 | 1 | 0 | 3
1 | 1/1/2017 | 30-06-2015 | 1 | 0 | 4
1 | 1/1/2017 | 31-07-2015 | 1 | 0 | 5
1 | 1/1/2017 | 31-08-2015 | 1 | 0 | 6
1 | 1/1/2017 | 30-09-2015 | 0 | 0 | 0
2 | 1/1/2017 | 31-10-2015 | 1 | 0 | 1
2 | 1/1/2017 | 30-11-2015 | 0 | 0 | 0
2 | 1/1/2017 | 31-12-2015 | 1 | 0 | 1
2 | 1/1/2017 | 31-01-2016 | 1 | 0 | 2
2 | 1/1/2017 | 28-02-2016 | 1 | 0 | 3
2 | 1/1/2017 | 31-03-2016 | 1 | 0 | 4
2 | 1/1/2017 | 30-04-2016 | 1 | 0 | 5
2 | 1/1/2017 | 31-05-2016 | 1 | 0 | 6
2 | 1/1/2017 | 30-06-2016 | 0 | 0 | 0
Группа имеет идентификатор и дату
Колонка C должна выводится на основе колонки А и В.
Если A == 1 и B == 0, то C получается C из предыдущей строки + 1.
Есть и другие условия, но я борюсь с этой частью.
Предполагая, что у нас есть столбец sort_date в dataframe.
Я попробовал следующий запрос:
SELECT
id,
date,
sort_date,
lag(A) OVER (PARTITION BY id, date ORDER BY sort_date) as prev,
CASE
WHEN A=1 AND B= 0 THEN 1
WHEN A=1 AND B> 0 THEN prev +1
ELSE 0
END AS A
FROM
Table
Это то, что я сделал для UDAF
val myFunc = new MyUDAF
val w = Window.partitionBy(col("ID"), col("START_DATE")).orderBy(col("SORT_DATE"))
val df = df.withColumn("C", myFunc(col("START_DATE"), col("X"),
col("Y"), col("A"),
col("B")).over(w))
PS: Я использую Спарк 1.6
Вы можете использовать ** Функции окна ** с помощью Spark SQL. – mrsrinivas
можете ли вы добавить код, который вы пробовали? – mrsrinivas
Пожалуйста, улучшите вопрос: можете ли вы объяснить немного больше того, чего вы пытаетесь достичь, что вы делали до сих пор, каков ваш вклад, каков ваш ожидаемый результат, вы хотите сделать это в RDD, как говорится в заголовке или в например, кадр данных, как формулировка столбца? что вы имеете в виду под группой? вы имеете в виду группу? как вы хотите, чтобы он отсортировался? –