ответ

1

По this tutorial, вы можете получить доступ к этому:

### define solver 
from caffe.proto import caffe_pb2 
s = caffe_pb2.SolverParameter() 

# Set a seed for reproducible experiments: 
# this controls for randomization in training. 
s.random_seed = 0xCAFFE 

# Specify locations of the train and (maybe) test networks. 
s.train_net = train_net_path 
s.test_net.append(test_net_path) 
s.test_interval = 500 # Test after every 500 training iterations. 
s.test_iter.append(100) # Test on 100 batches each time we test. 

s.max_iter = 10000  # no. of times to update the net (training iterations) 

# EDIT HERE to try different solvers 
# solver types include "SGD", "Adam", and "Nesterov" among others. 
s.type = "SGD" 
# Set the initial learning rate for SGD. 
s.base_lr = 0.01 # EDIT HERE to try different learning rates 

и т.д.