на основе формул, приведенных в базе данных Mathematica UUPDE http://blog.wolfram.com/2013/02/01/the-ultimate-univariate-probability-distribution-explorer/ Я нанесенная функции риски стандартного нормальное распределение в R.вычисления функции риски в R для стандартного нормального распределения
кажется правильными в определенном диапазоне , числовые проблемы возникают для больших значений, см. прилагаемый рисунок. Ниже полный код R.
Любые комментарии были бы очень оценены. смотри рисунок
PDF = function(x) { 1/(sqrt(2*pi))*exp(-x^2/2) }
erf <- function(x) 2 * pnorm(x * sqrt(2)) - 1
erfc <- function(x) 2 * pnorm(x * sqrt(2), lower = FALSE)
CDF = function(x) { 1/2 * (1 + erf(x/(sqrt(2)))) }
HF = function(x) { sqrt(2/pi)/(exp(x^2/2)*(2-erfc(-x/sqrt(2)))) }
SF = function(x) { 1 - 1/2 *erfc(-x/sqrt(2)) }
par(mar=c(3,3,1.5,0.5), oma=c(0,0,0,0), mgp=c(2,1,0))
par(mfrow = c(2, 2))
x = seq(from = -4,to = 10,by = .001)
##### PDF
a = PDF(x)
plot(x,a,'l',main='',ylab="PDF",xlab="x")
grid(nx = NULL,ny = NULL,col = "grey",lty = "dotted",lwd = par("lwd"),equilogs = TRUE)
##### CDF
a = CDF(x)
plot(x,a,'l',main='',ylab="CDF",xlab="x")
grid(nx = NULL,ny = NULL,col = "grey",lty = "dotted",lwd = par("lwd"),equilogs = TRUE)
##### HF
a = HF(x)
plot(x,a,'l',main='',ylab="HF",xlab="x")
grid(nx = NULL,ny = NULL,col = "grey",lty = "dotted",lwd = par("lwd"),equilogs = TRUE)
##### SF
a = SF(x)
plot(x,a,'l',main='',ylab="SF",xlab="x")
grid(nx = NULL,ny = NULL,col = "grey",lty = "dotted",lwd = par("lwd"),equilogs = TRUE)
Что вы хотите сказать? Вам нужна произвольная точность или вы заинтересованы только в определенном диапазоне? – Roland
Боковое замечание: мне интересно, что вы выбрали встроенную функцию cdf, чтобы получить функцию erf, а затем используйте ее, чтобы испечь собственную функцию cdf. – Dason
@Roland Я просто интересовался правильным сюжетом функций опасности и думал, что пошло не так. – maciekj