Я запускаю Лазанью и Теано для создания своей сверточной нейронной сети. В настоящее время я состою изget_all_param_values () как читать lasagne.layer
l_shape = lasagne.layers.ReshapeLayer(l_in, (-1, 3,130, 130))
l_conv1 = lasagne.layers.Conv2DLayer(l_shape, num_filters=32, filter_size=3, pad=1)
l_conv1_1 = lasagne.layers.Conv2DLayer(l_conv1, num_filters=32, filter_size=3, pad=1)
l_pool1 = lasagne.layers.MaxPool2DLayer(l_conv1_1, 2)
l_conv2 = lasagne.layers.Conv2DLayer(l_pool1, num_filters=64, filter_size=3, pad=1)
l_conv2_2 = lasagne.layers.Conv2DLayer(l_conv2, num_filters=64, filter_size=3, pad=1)
l_pool2 = lasagne.layers.MaxPool2DLayer(l_conv2_2, 2)
l_conv3 = lasagne.layers.Conv2DLayer(l_pool2, num_filters=64, filter_size=3, pad=1)
l_conv3_2 = lasagne.layers.Conv2DLayer(l_conv3, num_filters=64, filter_size=3, pad=1)
l_pool3 = lasagne.layers.MaxPool2DLayer(l_conv3_2, 2)
l_conv4 = lasagne.layers.Conv2DLayer(l_pool3, num_filters=64, filter_size=3, pad=1)
l_conv4_2 = lasagne.layers.Conv2DLayer(l_conv4, num_filters=64, filter_size=3, pad=1)
l_pool4 = lasagne.layers.MaxPool2DLayer(l_conv4_2, 2)
l_conv5 = lasagne.layers.Conv2DLayer(l_pool4, num_filters=64, filter_size=3, pad=1)
l_conv5_2 = lasagne.layers.Conv2DLayer(l_conv5, num_filters=64, filter_size=3, pad=1)
l_pool5 = lasagne.layers.MaxPool2DLayer(l_conv5_2, 2)
l_out = lasagne.layers.DenseLayer(l_pool5, num_units=2, nonlinearity=lasagne.nonlinearities.softmax)
Последний слой - это плотник, который использует softmax для вывода моей классификации. Моя конечная цель - получить вероятность, а не классификацию (0 или 1).
Когда я вызываю get_all_param_values (), он предоставляет мне обширный массив. Мне нужен только вес и смещение для последнего плотного слоя. Как вы это делаете? Я пробовал l_out.W и l_out.b и get_values ().
Заранее благодарен!