2016-04-04 3 views
1

Я начал изучать курс социальной сети Стэнфорда, а во второй лаборатории я столкнулся с проблемой с предоставленным кодом. Вот ссылка на код: http://sna.stanford.edu/sna_R_labs/lab_2.RПодкомпонент не работает в igraph (последняя половина лаборатории 2)

Это относится к следующей функции:

#################################################################### 
# LAB 2: Methodological beginnings - Density, Reciprocity, Triads, # 
# Transitivity, and heterogeneity. Node and network statistics. # 
#################################################################### 


# NOTE: if you have trouble because some packages are not installed, 
# see lab 1 for instructions on how to install all necessary packages. 
# Also see Lab 1 for prior functions. 


############################################################## 
# 
# Lab 2 
# 
# The purpose of this lab is to acquire basic cohesion 
# metrics of density, reciprocity, reach, path distance, 
# and transitivity. In addition, we'll develop triadic 
# analyses and a measure of ego-network heterogenity. 
# 
############################################################## 



### 
# 1. SET UP SESSION 
### 
install.packages("NetData") 

library(igraph) 
library(NetData) 
library(sna) 

### 
# 2. LOAD DATA 
### 

# We would ordinarily need to follow the same proceedure we did for the Krackhardt data 
# as we did in lab 1; see that lab for detail. 

data(kracknets, package = "NetData") 
data(package = "NetData") 
# Reduce to non-zero edges and build a graph object 
krack_full_nonzero_edges <- subset(krack_full_data_frame, (advice_tie > 0 | friendship_tie > 0 | reports_to_tie > 0)) 
head(krack_full_nonzero_edges) 

krack_full <- graph.data.frame(krack_full_nonzero_edges) 
summary(krack_full) 

# Set vertex attributes 
for (i in V(krack_full)) { 
    for (j in names(attributes)) { 
    krack_full <- set.vertex.attribute(krack_full, j, index=i, attributes[i+1,j]) 
    } 
} 
summary(krack_full) 

# Create sub-graphs based on edge attributes 
krack_advice <- delete.edges(krack_full, E(krack_full)[get.edge.attribute(krack_full,name = "advice_tie")==0]) 
summary(krack_advice) 

krack_friendship <- delete.edges(krack_full, E(krack_full)[get.edge.attribute(krack_full,name = "friendship_tie")==0]) 
summary(krack_friendship) 

krack_reports_to <- delete.edges(krack_full, E(krack_full)[get.edge.attribute(krack_full,name = "reports_to_tie")==0]) 
summary(krack_reports_to) 


### 
# 3. NODE-LEVEL STATISTICS 
### 

# Compute the indegree and outdegree for each node, first in the 
# full graph (accounting for all tie types) and then in each 
# tie-specific sub-graph. 
deg_full_in <- degree(krack_full, mode="in") 
deg_full_out <- degree(krack_full, mode="out") 
deg_full_in 
deg_full_out 

deg_advice_in <- degree(krack_advice, mode="in") 
deg_advice_out <- degree(krack_advice, mode="out") 
deg_advice_in 
deg_advice_out 

deg_friendship_in <- degree(krack_friendship, mode="in") 
deg_friendship_out <- degree(krack_friendship, mode="out") 
deg_friendship_in 
deg_friendship_out 

deg_reports_to_in <- degree(krack_reports_to, mode="in") 
deg_reports_to_out <- degree(krack_reports_to, mode="out") 
deg_reports_to_in 
deg_reports_to_out 

# Reachability can only be computed on one vertex at a time. To 
# get graph-wide statistics, change the value of "vertex" 
# manually or write a for loop. (Remember that, unlike R objects, 
# igraph objects are numbered from 0.) 

reachability <- function(g, m) { 
    reach_mat = matrix(nrow = vcount(g), 
        ncol = vcount(g)) 
    for (i in 1:vcount(g)) { 
    reach_mat[i,] = 0 
    this_node_reach <- subcomponent(g, i, mode = m) # used "i" instead of "(i - 1)" 

    for (j in 1:(length(this_node_reach))) { 
     alter = this_node_reach[j] # removed "+ 1" 
     reach_mat[i, alter] = 1 
    } 
    } 
    return(reach_mat) 
} 

reach_full_in <- reachability(krack_full, 'in') 
reach_full_out <- reachability(krack_full, 'out') 
reach_full_in 
reach_full_out 

reach_advice_in <- reachability(krack_advice, 'in') 
reach_advice_out <- reachability(krack_advice, 'out') 
reach_advice_in 
reach_advice_out 

reach_friendship_in <- reachability(krack_friendship, 'in') 
reach_friendship_out <- reachability(krack_friendship, 'out') 
reach_friendship_in 
reach_friendship_out 

reach_reports_to_in <- reachability(krack_reports_to, 'in') 
reach_reports_to_out <- reachability(krack_reports_to, 'out') 
reach_reports_to_in 
reach_reports_to_out 


# Often we want to know path distances between individuals in a network. 
# This is often done by calculating geodesics, or shortest paths between 
# each ij pair. One can symmetrize the data to do this (see lab 1), or 
# calculate it for outward and inward ties separately. Averaging geodesics 
# for the entire network provides an average distance or sort of cohesiveness 
# score. Dichotomizing distances reveals reach, and an average of reach for 
# a network reveals what percent of a network is connected in some way. 

# Compute shortest paths between each pair of nodes. 
sp_full_in <- shortest.paths(krack_full, mode='in') 
sp_full_out <- shortest.paths(krack_full, mode='out') 
sp_full_in 
sp_full_out 

sp_advice_in <- shortest.paths(krack_advice, mode='in') 
sp_advice_out <- shortest.paths(krack_advice, mode='out') 
sp_advice_in 
sp_advice_out 

sp_friendship_in <- shortest.paths(krack_friendship, mode='in') 
sp_friendship_out <- shortest.paths(krack_friendship, mode='out') 
sp_friendship_in 
sp_friendship_out 

sp_reports_to_in <- shortest.paths(krack_reports_to, mode='in') 
sp_reports_to_out <- shortest.paths(krack_reports_to, mode='out') 
sp_reports_to_in 
sp_reports_to_out 


# Assemble node-level stats into single data frame for export as CSV. 

# First, we have to compute average values by node for reachability and 
# shortest path. (We don't have to do this for degree because it is 
# already expressed as a node-level value.) 
reach_full_in_vec <- vector() 
reach_full_out_vec <- vector() 
reach_advice_in_vec <- vector() 
reach_advice_out_vec <- vector() 
reach_friendship_in_vec <- vector() 
reach_friendship_out_vec <- vector() 
reach_reports_to_in_vec <- vector() 
reach_reports_to_out_vec <- vector() 

sp_full_in_vec <- vector() 
sp_full_out_vec <- vector() 
sp_advice_in_vec <- vector() 
sp_advice_out_vec <- vector() 
sp_friendship_in_vec <- vector() 
sp_friendship_out_vec <- vector() 
sp_reports_to_in_vec <- vector() 
sp_reports_to_out_vec <- vector() 

for (i in 1:vcount(krack_full)) { 
    reach_full_in_vec[i] <- mean(reach_full_in[i,]) 
    reach_full_out_vec[i] <- mean(reach_full_out[i,]) 
    reach_advice_in_vec[i] <- mean(reach_advice_in[i,]) 
    reach_advice_out_vec[i] <- mean(reach_advice_out[i,]) 
    reach_friendship_in_vec[i] <- mean(reach_friendship_in[i,]) 
    reach_friendship_out_vec[i] <- mean(reach_friendship_out[i,]) 
    reach_reports_to_in_vec[i] <- mean(reach_reports_to_in[i,]) 
    reach_reports_to_out_vec[i] <- mean(reach_reports_to_out[i,]) 

    sp_full_in_vec[i] <- mean(sp_full_in[i,]) 
    sp_full_out_vec[i] <- mean(sp_full_out[i,]) 
    sp_advice_in_vec[i] <- mean(sp_advice_in[i,]) 
    sp_advice_out_vec[i] <- mean(sp_advice_out[i,]) 
    sp_friendship_in_vec[i] <- mean(sp_friendship_in[i,]) 
    sp_friendship_out_vec[i] <- mean(sp_friendship_out[i,]) 
    sp_reports_to_in_vec[i] <- mean(sp_reports_to_in[i,]) 
    sp_reports_to_out_vec[i] <- mean(sp_reports_to_out[i,]) 
} 

# Next, we assemble all of the vectors of node-levelvalues into a 
# single data frame, which we can export as a CSV to our working 
# directory. 
node_stats_df <- cbind(deg_full_in, 
         deg_full_out, 
         deg_advice_in, 
         deg_advice_out, 
         deg_friendship_in, 
         deg_friendship_out, 
         deg_reports_to_in, 
         deg_reports_to_out, 

         reach_full_in_vec, 
         reach_full_out_vec, 
         reach_advice_in_vec, 
         reach_advice_out_vec, 
         reach_friendship_in_vec, 
         reach_friendship_out_vec, 
         reach_reports_to_in_vec, 
         reach_reports_to_out_vec, 

         sp_full_in_vec, 
         sp_full_out_vec, 
         sp_advice_in_vec, 
         sp_advice_out_vec, 
         sp_friendship_in_vec, 
         sp_friendship_out_vec, 
         sp_reports_to_in_vec, 
         sp_reports_to_out_vec) 

write.csv(node_stats_df, 'krack_node_stats.csv') 

# Question #1 - What do these statistics tell us about 
# each network and its individuals in general? 

### 
# 3. NETWORK-LEVEL STATISTICS 
### 

# Many initial analyses of networks begin with distances and reach, 
# and then move towards global summary statistics of the network. 
# 
# As a reminder, entering a question mark followed by a function 
# name (e.g., ?graph.density) pulls up the help file for that function. 
# This can be helpful to understand how, exactly, stats are calculated. 

# Degree 
mean(deg_full_in) 
sd(deg_full_in) 
mean(deg_full_out) 
sd(deg_full_out) 

mean(deg_advice_in) 
sd(deg_advice_in) 
mean(deg_advice_out) 
sd(deg_advice_out) 

mean(deg_friendship_in) 
sd(deg_friendship_in) 
mean(deg_friendship_out) 
sd(deg_friendship_out) 

mean(deg_reports_to_in) 
sd(deg_reports_to_in) 
mean(deg_reports_to_out) 
sd(deg_reports_to_out) 


# Shortest paths 
# ***Why do in and out come up with the same results? 
# In and out shortest paths are simply transposes of one another; 
# thus, when we compute statistics across the whole network they have to be the same. 

mean(sp_full_in[which(sp_full_in != Inf)]) 
sd(sp_full_in[which(sp_full_in != Inf)]) 
mean(sp_full_out[which(sp_full_out != Inf)]) 
sd(sp_full_out[which(sp_full_out != Inf)]) 

mean(sp_advice_in[which(sp_advice_in != Inf)]) 
sd(sp_advice_in[which(sp_advice_in != Inf)]) 
mean(sp_advice_out[which(sp_advice_out != Inf)]) 
sd(sp_advice_out[which(sp_advice_out != Inf)]) 

mean(sp_friendship_in[which(sp_friendship_in != Inf)]) 
sd(sp_friendship_in[which(sp_friendship_in != Inf)]) 
mean(sp_friendship_out[which(sp_friendship_out != Inf)]) 
sd(sp_friendship_out[which(sp_friendship_out != Inf)]) 

mean(sp_reports_to_in[which(sp_reports_to_in != Inf)]) 
sd(sp_reports_to_in[which(sp_reports_to_in != Inf)]) 
mean(sp_reports_to_out[which(sp_reports_to_out != Inf)]) 
sd(sp_reports_to_out[which(sp_reports_to_out != Inf)]) 

# Reachability 
mean(reach_full_in[which(reach_full_in != Inf)]) 
sd(reach_full_in[which(reach_full_in != Inf)]) 
mean(reach_full_out[which(reach_full_out != Inf)]) 
sd(reach_full_out[which(reach_full_out != Inf)]) 

mean(reach_advice_in[which(reach_advice_in != Inf)]) 
sd(reach_advice_in[which(reach_advice_in != Inf)]) 
mean(reach_advice_out[which(reach_advice_out != Inf)]) 
sd(reach_advice_out[which(reach_advice_out != Inf)]) 

mean(reach_friendship_in[which(reach_friendship_in != Inf)]) 
sd(reach_friendship_in[which(reach_friendship_in != Inf)]) 
mean(reach_friendship_out[which(reach_friendship_out != Inf)]) 
sd(reach_friendship_out[which(reach_friendship_out != Inf)]) 

mean(reach_reports_to_in[which(reach_reports_to_in != Inf)]) 
sd(reach_reports_to_in[which(reach_reports_to_in != Inf)]) 
mean(reach_reports_to_out[which(reach_reports_to_out != Inf)]) 
sd(reach_reports_to_out[which(reach_reports_to_out != Inf)]) 

# Density 
graph.density(krack_full) 
graph.density(krack_advice) 
graph.density(krack_friendship) 
graph.density(krack_reports_to) 

# Reciprocity 
reciprocity(krack_full) 
reciprocity(krack_advice) 
reciprocity(krack_friendship) 
reciprocity(krack_reports_to) 

# Transitivity 
transitivity(krack_full) 
transitivity(krack_advice) 
transitivity(krack_friendship) 
transitivity(krack_reports_to) 

# Triad census. Here we'll first build a vector of labels for 
# the different triad types. Then we'll combine this vector 
# with the triad censuses for the different networks, which 
# we'll export as a CSV. 

census_labels = c('003', 
        '012', 
        '102', 
       '021D', 
       '021U', 
       '021C', 
       '111D', 
       '111U', 
       '030T', 
       '030C', 
        '201', 
       '120D', 
       '120U', 
       '120C', 
        '210', 
        '300') 
tc_full <- triad.census(krack_full) 
tc_advice <- triad.census(krack_advice) 
tc_friendship <- triad.census(krack_friendship) 
tc_reports_to <- triad.census(krack_reports_to) 

triad_df <- data.frame(census_labels, 
        tc_full, 
        tc_advice, 
        tc_friendship, 
        tc_reports_to) 
triad_df 

# To export any of these vectors to a CSV for use in another program, simply 
# use the write.csv() command: 
write.csv(triad_df, 'krack_triads.csv') 

# Question #2 - (a) How do the three networks differ on network statictics? 
# (b) What does the triad census tell us? Can you calculate the likelihood of 
# any triad's occurrence? (c) See the back of Wasserman and Faust and its section 
# on triads. Calculate the degree of clustering and hierarchy in Excel. 
# What do we learn from that? 




### 
# 4. HETEROGENEITY 
### 

# Miller and McPherson write about processes of homophily and 
# here we take a brief look at one version of this issue. 
# In particular, we look at the extent to which each actor's 
# "associates" (friend, advisor, boos) are heterogenous or not. 

# We'll use a statistic called the IQV, or Index of Qualitative 
# Variation. This is just an implementation of Blau's Index of 
# Heterogeneity (known to economists as the Herfindahl-Hirschman 
# index), normalized so that perfect heterogeneity (i.e., equal 
# distribution across categories) equals 1. 

# NOTE that this code only works with categorical variables that 
# have been numerically coded to integer values that ascend 
# sequentially from 0; you may have to recode your data to get this 
# to work properly. 
# We are interested in many of the attributes of nodes. To save 
# time and to make our lives better we are going to create a function 
# that will provide an IQV statistic for any network and for 
# any categorical variable. A function is a simple way to 
# create code that is both reusable and easier to edit. 

# Functions have names and receive arguments. For example, 
# anytime you call table() you are calling the table function. 
# We could write code to duplicate the table function for each 
# of our variables, but it is faster to write a single general tool 
# that will provide frequencies for any variable. If I have 
# a dataframe with the variable gender and I want to see the 
# split of males and females I would pass the argument 
# "dataframe$gender" to the table function. We follow a 
# similar model here. Understanding each step is less important 
# than understanding the usefulness and power of functions. 

get_iqvs <- function(graph, attribute) { 

    #we have now defined a function, get_iqvs, that will take the 
    # graph "graph" and find the iqv statistic for the categorical 
    # variable "attribute." Within this function whenever we use the 
    #variables graph or attribute they correspond to the graph and 
    # variable we passed (provided) to the function 

    mat <- get.adjacency(graph) 

    # To make this function work on a wide variety of variables we 
    # find out how many coded levels (unique responses) exist for 
    # the attribute variable programatically 

    attr_levels = get.vertex.attribute(graph, 
            attribute, 
            V(graph)) 

    num_levels = length(unique(attr_levels)) 
    iqvs = rep(0, nrow(mat)) 

    # Now that we know how many levels exist we want to loop 
    # (go through) each actor in the network. Loops iterate through 
    # each value in a range. Here we are looking through each ego 
    # in the range of egos starting at the first and ending at the 
    # last. The function nrow provides the number of rows in an 
    # object and the ":" opperand specifies the range. Between 
    # the curly braces of the for loop ego will represent exactly 
    # one value between 1 and the number of rows in the graph 
    # object, iterating by one during each execution of the loop. 

    for (ego in 1:nrow(mat)) { 

    # initialize actor-specific variables 
    alter_attr_counts = rep(0, num_levels) 
    num_alters_this_ego = 0 
    sq_fraction_sum = 0 

    # For each ego we want to check each tied alter for the same 
    # level on the variable attribute as the ego. 

    for (alter in 1:ncol(mat)) { 

     # only examine alters that are actually tied to ego 
     if (mat[ego, alter] == 1) { 

     num_alters_this_ego = num_alters_this_ego + 1 

     # get the alter's level on the attribute 
     alter_attr = get.vertex.attribute(graph, 
             attribute, (alter - 1)) 

     # increment the count of alters with this level 
     # of the attribute by 1 
     alter_attr_counts[alter_attr + 1] = 
      alter_attr_counts[alter_attr + 1] + 1 
     } 
    } 

    # now that we're done looping through all of the alters, 
    # get the squared fraction for each level of the attribute 
    # out of the total number of attributes 
    for (i in 1:num_levels) { 
     attr_fraction = alter_attr_counts[i]/
     num_alters_this_ego 
     sq_fraction_sum = sq_fraction_sum + attr_fraction^2 
    } 

    # now we can compute the ego's blau index... 
    blau_index = 1 - sq_fraction_sum 

    # and the ego's IQV, which is just a normalized blau index 
    iqvs[ego] = blau_index/(1 - (1/num_levels)) 
    } 

    # The final part of a function returns the calculated value. 
    # So if we called get_iqvs(testgraph, gender) return would 
    # provide the iqvs for gender in the test graph. If we are also 
    # intersted in race we could simply change the function call 
    # to get_iqvs(testgraph, race). No need to write all this 
    # code again for different variables. 

    return(iqvs) 
} 



# For this data set, we'll look at homophily across departments, 
# which is already coded 0-4, so no recoding is needed. 

advice_iqvs <- get_iqvs(krack_advice, 'DEPT') 
advice_iqvs 

friendship_iqvs <- get_iqvs(krack_friendship, 'DEPT') 
friendship_iqvs 

reports_to_iqvs <- get_iqvs(krack_reports_to, 'DEPT') 
reports_to_iqvs 

# Question #3 - What does the herfindahl index reveal about 
# attribute sorting in networks? What does it mean for each network? 


##### 
# Extra-credit: What might be a better way to test the occurrence 
# of homophily or segregation in a network? How might we code that in R? 
##### 

##### 
# Tau statistic (code by Sam Pimentel) 
##### 


#R code for generating random graphs: 
#requires packages ergm, intergraph 

#set up weighting vectors for clustering and hierarchy 
clust.mask <- rep(0,16) 
clust.mask[c(1,3,16)] <- 1 
hier.mask <- rep(1,16) 
hier.mask[c(6:8,10:11)] <- 0 

#compute triad count and triad proportion for a given weighting vector 
mask.stat <- function(my.graph, my.mask){ 
n.nodes <- vcount(my.graph) 
n.edges <- ecount(my.graph) 
#set probability of edge formation in random graph to proportion of possibleedges present in original 
p.edge <- n.edges/(n.nodes*(n.nodes +1)/2) 
r.graph <- as.network.numeric(n.nodes, density = p.edge) 
r.igraph <- as.igraph(r.graph) 
tc.graph <- triad.census(r.igraph) 
clust <- sum(tc.graph*my.mask) 
clust.norm <- clust/sum(tc.graph) 
return(c(clust,clust.norm)) 
} 
install.packages('intergraph') 
library(intergraph) 
#build 100 random graphs and compute their clustering and hierarchy measurements to create an empirical null distribution 
emp.distro <- function(this.graph){ 
    clust <- matrix(rep(0,200), nrow=2) 
    hier <- matrix(rep(0,200),nrow=2) 
    for(i in c(1:100)){ 
    clust[,i] <- mask.stat(this.graph, clust.mask) 
    hier[,i] <- mask.stat(this.graph, hier.mask) 
    } 
    my.mat <- rbind(clust, hier) 
    rownames(my.mat) <- c("clust.ct", "clust.norm", "hier.ct", "hier.ct.norm") 
    return(my.mat) 
} 


#fix randomization if desired so results are replicable 
set.seed(3123) 
#compute empirical distributions for each network 
hc_advice <- emp.distro(krack_advice) 
hc_friend <- emp.distro(krack_friendship) 
hc_report <- emp.distro(krack_reports_to) 
When I try and run the hc_advice variable, this error comes up: 

hc_advice <- emp.distro(krack_advice) 
Error in mask.stat(this.graph, clust.mask) : 
    could not find function "as.network.numeric" 

Я не уверен, что проблема в том, что я следовал инструкциям в точности, и я не думаю, что as.network .numeric имеет к этому какое-то отношение.

Любая помощь была бы принята с благодарностью!

Благодаря

+0

вы установили и загруженный пакет 'intergraph'? –

+0

Я сделал, но та же ошибка появляется –

+0

Можете ли вы представить воспроизводимый пример? –

ответ

1

установлен ли вы и загрузили ergm пакет? as.network.numeric происходит оттуда.

Edit: хорошо, я проверил network пакет и, похоже, as.network.numeric ушел. Однако, документация as.network говорит:

Если «ergm» пакет загружен, «сеть» может функционировать как сокращение для «as.network.numeric» если «х» представляет собой целое число, определяющее количество узлы.

Похоже, он все еще работает:

> as.network(100, density=0.002) 
Network attributes: 
    vertices = 100 
    directed = TRUE 
    hyper = FALSE 
    loops = FALSE 
    multiple = FALSE 
    bipartite = FALSE 
    total edges= 24 
    missing edges= 0 
    non-missing edges= 24 

Vertex attribute names: 
    vertex.names 

Так что я думаю, что вы можете просто заменить as.network.numeric с as.network и он должен работать.

+0

Я только что добавил его и пришла такая же ошибка –

+0

Кто-нибудь пытался копировать и вставлять это в R и запускать его? –

 Смежные вопросы

  • Нет связанных вопросов^_^