У меня есть простая нейронная сеть с использованием Tensorflow. Вот сессия:Модель перестройки в Tensorflow
with tensorFlow.Session() as sess:
sess.run(tensorFlow.global_variables_initializer())
for epoch in range(epochs):
i = 0
epochLoss = 0
for _ in range(int(len(data)/batchSize)):
ex, ey = nextBatch(i)
i += 1
feedDict = {x :ex, y:ey }
_, cos = sess.run([optimizer,cost], feed_dict= feedDict)
epochLoss += cos/(int(len(data))/batchSize)
print("Epoch", epoch + 1, "completed out of", epochs, "loss:", "{:.9f}".format(epochLoss))
save_path = saver.save(sess, "model.ckpt")
print("Model saved in file: %s" % save_path)
на последних 2-х строк я сохранил модель и восстановить график в другом классе:
with new_graph.as_default():
with tf.Session(graph=new_graph) as sess:
sess.run(tf.global_variables_initializer())
new_saver = tf.train.import_meta_graph('model.ckpt.meta')
new_saver.restore(sess, tf.train.latest_checkpoint('./'))
Я хочу переучивать модель, которая означает не инициализировать веса, просто чтобы обновить их с последней точки, в которой он остановился.
Как я могу это сделать?
этот вопрос действительно о сохранении и восстановлении моделей. – vin