2009-08-19 5 views
9

Позволяет сказать, что у меня есть структура базы данных с тремя таблицами, которые выглядят так:Как сопоставить один класс с несколькими таблицами с SQLAlchemy?

items 
- item_id 
- item_handle 

attributes 
- attribute_id 
- attribute_name 

item_attributes 
- item_attribute_id 
- item_id 
- attribute_id 
- attribute_value 

Я хотел бы быть в состоянии сделать это в SQLAlchemy:

item = Item('item1') 
item.foo = 'bar' 

session.add(item) 
session.commit() 

item1 = session.query(Item).filter_by(handle='item1').one() 
print item1.foo # => 'bar' 

Я новичок в SQLAlchemy и я нашел это в документации (http://www.sqlalchemy.org/docs/05/mappers.html#mapping-a-class-against-multiple-tables):

j = join(items, item_attributes, items.c.item_id == item_attributes.c.item_id). \ 
    join(attributes, item_attributes.c.attribute_id == attributes.c.attribute_id) 

mapper(Item, j, properties={ 
    'item_id': [items.c.item_id, item_attributes.c.item_id], 
    'attribute_id': [item_attributes.c.attribute_id, attributes.c.attribute_id], 
}) 

это только добавляет item_id и attribute_id пункту и его невозможно добавить атрибуты объекта Item.

Является ли то, что я пытаюсь достичь с помощью SQLAlchemy? Есть ли лучший способ структурировать базу данных для получения одинакового поведения «динамических столбцов»?

+0

ссылка гниль http://docs.sqlalchemy.org/en/latest/orm/nonstandard_mappings.html – slashdottir

ответ

8

Это называется модель entity-attribute-value. Пример приведен в примере каталога примеров SQLAlchemy: vertical/.

Если вы используете PostgreSQL, то есть также модуль hstore contrib, который может хранить строку для сопоставления строк. Если вам интересно, у меня есть код для настраиваемого типа, который позволяет использовать его для хранения расширенных атрибутов с помощью SQLAlchemy.

Другой способ сохранения пользовательских атрибутов - сериализовать их в текстовое поле. В этом случае вы потеряете способность фильтровать по атрибутам.

+0

Нашел этот ответ (именно то, что я искал), но ссылка была сломана. См. Мой ответ ниже для одного из файлов примеров. –

+2

Вы могли бы исправить ссылку. –

+1

Мне пришлось клонировать репо, чтобы получить код. Я больше не могу получить доступ к коду через trac. –

5

Ссылка на вертикальный/вертикальный.py не работает. Пример был переименован в dictlike-polymorphic.py и dictlike.py.

Я вставив в содержании dictlike.py:

"""Mapping a vertical table as a dictionary. 

This example illustrates accessing and modifying a "vertical" (or 
"properties", or pivoted) table via a dict-like interface. These are tables 
that store free-form object properties as rows instead of columns. For 
example, instead of:: 

    # A regular ("horizontal") table has columns for 'species' and 'size' 
    Table('animal', metadata, 
     Column('id', Integer, primary_key=True), 
     Column('species', Unicode), 
     Column('size', Unicode)) 

A vertical table models this as two tables: one table for the base or parent 
entity, and another related table holding key/value pairs:: 

    Table('animal', metadata, 
     Column('id', Integer, primary_key=True)) 

    # The properties table will have one row for a 'species' value, and 
    # another row for the 'size' value. 
    Table('properties', metadata 
     Column('animal_id', Integer, ForeignKey('animal.id'), 
       primary_key=True), 
     Column('key', UnicodeText), 
     Column('value', UnicodeText)) 

Because the key/value pairs in a vertical scheme are not fixed in advance, 
accessing them like a Python dict can be very convenient. The example below 
can be used with many common vertical schemas as-is or with minor adaptations. 

""" 

class VerticalProperty(object): 
    """A key/value pair. 

    This class models rows in the vertical table. 
    """ 

    def __init__(self, key, value): 
     self.key = key 
     self.value = value 

    def __repr__(self): 
     return '<%s %r=%r>' % (self.__class__.__name__, self.key, self.value) 


class VerticalPropertyDictMixin(object): 
    """Adds obj[key] access to a mapped class. 

    This is a mixin class. It can be inherited from directly, or included 
    with multiple inheritence. 

    Classes using this mixin must define two class properties:: 

    _property_type: 
     The mapped type of the vertical key/value pair instances. Will be 
     invoked with two positional arugments: key, value 

    _property_mapping: 
     A string, the name of the Python attribute holding a dict-based 
     relationship of _property_type instances. 

    Using the VerticalProperty class above as an example,:: 

     class MyObj(VerticalPropertyDictMixin): 
      _property_type = VerticalProperty 
      _property_mapping = 'props' 

     mapper(MyObj, sometable, properties={ 
     'props': relationship(VerticalProperty, 
          collection_class=attribute_mapped_collection('key'))}) 

    Dict-like access to MyObj is proxied through to the 'props' relationship:: 

     myobj['key'] = 'value' 
     # ...is shorthand for: 
     myobj.props['key'] = VerticalProperty('key', 'value') 

     myobj['key'] = 'updated value'] 
     # ...is shorthand for: 
     myobj.props['key'].value = 'updated value' 

     print myobj['key'] 
     # ...is shorthand for: 
     print myobj.props['key'].value 

    """ 

    _property_type = VerticalProperty 
    _property_mapping = None 

    __map = property(lambda self: getattr(self, self._property_mapping)) 

    def __getitem__(self, key): 
     return self.__map[key].value 

    def __setitem__(self, key, value): 
     property = self.__map.get(key, None) 
     if property is None: 
      self.__map[key] = self._property_type(key, value) 
     else: 
      property.value = value 

    def __delitem__(self, key): 
     del self.__map[key] 

    def __contains__(self, key): 
     return key in self.__map 

    # Implement other dict methods to taste. Here are some examples: 
    def keys(self): 
     return self.__map.keys() 

    def values(self): 
     return [prop.value for prop in self.__map.values()] 

    def items(self): 
     return [(key, prop.value) for key, prop in self.__map.items()] 

    def __iter__(self): 
     return iter(self.keys()) 


if __name__ == '__main__': 
    from sqlalchemy import (MetaData, Table, Column, Integer, Unicode, 
     ForeignKey, UnicodeText, and_, not_) 
    from sqlalchemy.orm import mapper, relationship, create_session 
    from sqlalchemy.orm.collections import attribute_mapped_collection 

    metadata = MetaData() 

    # Here we have named animals, and a collection of facts about them. 
    animals = Table('animal', metadata, 
        Column('id', Integer, primary_key=True), 
        Column('name', Unicode(100))) 

    facts = Table('facts', metadata, 
        Column('animal_id', Integer, ForeignKey('animal.id'), 
         primary_key=True), 
        Column('key', Unicode(64), primary_key=True), 
        Column('value', UnicodeText, default=None),) 

    class AnimalFact(VerticalProperty): 
     """A fact about an animal.""" 

    class Animal(VerticalPropertyDictMixin): 
     """An animal. 

     Animal facts are available via the 'facts' property or by using 
     dict-like accessors on an Animal instance:: 

      cat['color'] = 'calico' 
      # or, equivalently: 
      cat.facts['color'] = AnimalFact('color', 'calico') 
     """ 

     _property_type = AnimalFact 
     _property_mapping = 'facts' 

     def __init__(self, name): 
      self.name = name 

     def __repr__(self): 
      return '<%s %r>' % (self.__class__.__name__, self.name) 


    mapper(Animal, animals, properties={ 
     'facts': relationship(
      AnimalFact, backref='animal', 
      collection_class=attribute_mapped_collection('key')), 
     }) 
    mapper(AnimalFact, facts) 


    metadata.bind = 'sqlite:///' 
    metadata.create_all() 
    session = create_session() 

    stoat = Animal(u'stoat') 
    stoat[u'color'] = u'reddish' 
    stoat[u'cuteness'] = u'somewhat' 

    # dict-like assignment transparently creates entries in the 
    # stoat.facts collection: 
    print stoat.facts[u'color'] 

    session.add(stoat) 
    session.flush() 
    session.expunge_all() 

    critter = session.query(Animal).filter(Animal.name == u'stoat').one() 
    print critter[u'color'] 
    print critter[u'cuteness'] 

    critter[u'cuteness'] = u'very' 

    print 'changing cuteness:' 
    metadata.bind.echo = True 
    session.flush() 
    metadata.bind.echo = False 

    marten = Animal(u'marten') 
    marten[u'color'] = u'brown' 
    marten[u'cuteness'] = u'somewhat' 
    session.add(marten) 

    shrew = Animal(u'shrew') 
    shrew[u'cuteness'] = u'somewhat' 
    shrew[u'poisonous-part'] = u'saliva' 
    session.add(shrew) 

    loris = Animal(u'slow loris') 
    loris[u'cuteness'] = u'fairly' 
    loris[u'poisonous-part'] = u'elbows' 
    session.add(loris) 
    session.flush() 

    q = (session.query(Animal). 
     filter(Animal.facts.any(
      and_(AnimalFact.key == u'color', 
       AnimalFact.value == u'reddish')))) 
    print 'reddish animals', q.all() 

    # Save some typing by wrapping that up in a function: 
    with_characteristic = lambda key, value: and_(AnimalFact.key == key, 
                AnimalFact.value == value) 

    q = (session.query(Animal). 
     filter(Animal.facts.any(
      with_characteristic(u'color', u'brown')))) 
    print 'brown animals', q.all() 

    q = (session.query(Animal). 
      filter(not_(Animal.facts.any(
         with_characteristic(u'poisonous-part', u'elbows'))))) 
    print 'animals without poisonous-part == elbows', q.all() 

    q = (session.query(Animal). 
     filter(Animal.facts.any(AnimalFact.value == u'somewhat'))) 
    print 'any animal with any .value of "somewhat"', q.all() 

    # Facts can be queried as well. 
    q = (session.query(AnimalFact). 
     filter(with_characteristic(u'cuteness', u'very'))) 
    print 'just the facts', q.all() 


    metadata.drop_all()