У меня возникли проблемы с созданием графика MDS в edgeR для визуализации групп экспериментальных (лейкозов) и контроля (здоровых доноров) в цвете.Цветной график MDS в edgeR
Я использовал файлы htseq в качестве входных данных для edgeR. Каждый файл состоит из двух столбцов - gene_ID и read count. «А» означает пациентов с лейкемией, «Н» означает здоровых доноров.
Вот мой код:
Создать таблицу:
samples <- matrix(c("A18.txt","experiment","blood_exp",
"A19.txt","experiment","blood_exp",
"A20.txt","experiment","blood_exp",
"A23.txt","experiment","blood_exp",
"A24.txt","experiment","blood_exp",
"A26.txt","experiment","blood_exp",
"A30.txt","experiment","blood_exp",
"A37.txt","experiment","blood_exp",
"H11.txt","control","blood_control",
"H12.txt","control","blood_control",
"H13.txt","control","blood_control",
"H15.txt","control","blood_control",
"H16.txt","control","blood_control",
"H17.txt","control","blood_control",
"H18.txt","control","blood_control",
"H19.txt","control","blood_control"),
nrow = 16, ncol = 3, byrow = TRUE, dimnames = list(c(1:16), c("library_name","condition","group_ALL_vs_control")))
samples <- as.data.frame (samples, row.names = NULL, optional = FALSE, stringAsFactors = default.stringAsFactors())
Используйте функцию Кромкообрезная, readDGE, читать в ЧИТАЕТ COUNT файлов созданного фру htseq подсчета:
counts <- readDGE(samples$library_name, path = 'C:/Users/okbm4/Desktop/htseq_files', columns=c(1,2), group = samples$group_ALL_vs_control, header = FALSE)
colnames(counts) <- samples$library_name
Фильтр слабо выраженные и неинформативные (то есть, аномальные) характеристики:
noint <- rownames(counts) %in% c('__no_feature','__ambiguous','__too_low_aQual','__not_aligned','__alignment_not_unique')
cpms <- cpm(counts)
keep <- rowSums (cpms > 1) >= 4 & !noint
counts <- counts[keep,]
Создание объекта DGElist
counts <- DGEList(counts=counts,group = samples$group_ALL_vs_control)
фактор Эстимейт нормализации, это нормализация для размера библиотеки
counts <- calcNormFactors(counts)
Inspect отношения между образцами с использованием МДС участка.
pdf(file = 'HCB_ALL.pdf', width = 9, height = 6)
plotMDS(counts, labels = c('A18.txt','A19.txt','A20.txt','A23.txt','A24.txt','A26.txt','A30.txt','A37.txt','H11.txt','H12.txt','H13.txt','H15.txt','H16.txt','H17.txt','H18.txt','H19.txt'),
xlab = 'Dimension 1',
ylab = 'Dimension 2',
asp = 6/9,
cex = 0.8,
main = 'Multidimentional scaling plot')
par(cex.axis =0.6, cex.lab = 0.6, cex.main = 1)
Прилагаемый файл, который я создаю раньше.
Я был бы рад услышать любые предложения.
Просьба учитывать, действительно ли весь этот код необходимо продемонстрировать, чего вы пытаетесь достичь (покрасьте некоторые моменты). –