Программа, как представляется, не сохраняет подготовленную сессию. Я думаю, вы хотите сделать это в два этапа.
- Поезд и сохранить сессию
- Восстановление сохранить сеанс и запустить тестовые данные через него.
Шаг 1:
#!/usr/bin/env python
import tensorflow as tf
import numpy as np
from numpy import genfromtxt
import sklearn
# Convert to one hot
def convertOneHot(data):
y=np.array([int(i[0]) for i in data])
y_onehot=[0]*len(y)
for i,j in enumerate(y):
y_onehot[i]=[0]*(y.max() + 1)
y_onehot[i][j]=1
return (y,y_onehot)
# Build Example Data is CSV format, but use Iris data
from sklearn import datasets
from sklearn.model_selection import train_test_split
def buildDataFromIris():
iris = datasets.load_iris()
X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.33, random_state=42)
f=open('cs-training.csv','w')
for i,j in enumerate(X_train):
k=np.append(np.array(y_train[i]),j )
f.write(",".join([str(s) for s in k]) + '\n')
f.close()
f=open('cs-test.csv','w')
for i,j in enumerate(X_test):
k=np.append(np.array(y_test[i]),j )
f.write(",".join([str(s) for s in k]) + '\n')
f.close()
# Recreate logging and save dir
# Seems the tensorflow won't always overwrite
import shutil, os, sys
TMPDir='./tensorTMP'
try:
shutil.rmtree(TMPDir)
except:
print "Tmp Dir did not exist...that's okay"
os.mkdir(TMPDir, 0755)
# Populate the data
buildDataFromIris()
data = genfromtxt('cs-training.csv',delimiter=',') # Training data
test_data = genfromtxt('cs-test.csv',delimiter=',') # Test data
x_train=np.array([ i[1::] for i in data])
y_train,y_train_onehot = convertOneHot(data)
x_test=np.array([ i[1::] for i in test_data])
y_test,y_test_onehot = convertOneHot(test_data)
A=data.shape[1]-1 # Number of features, Note first is y
B=len(y_train_onehot[0])
tf_in = tf.placeholder("float", [None, A]) # Features
tf_weight = tf.Variable(tf.zeros([A,B]))
tf_bias = tf.Variable(tf.zeros([B]))
tf_softmax = tf.nn.softmax(tf.matmul(tf_in,tf_weight) + tf_bias)
# Training via backpropagation
tf_softmax_correct = tf.placeholder("float", [None,B])
tf_cross_entropy = -tf.reduce_sum(tf_softmax_correct*tf.log(tf_softmax))
# Train using tf.train.GradientDescentOptimizer
tf_train_step = tf.train.GradientDescentOptimizer(0.01).minimize(tf_cross_entropy)
# Add accuracy checking nodes
tf_correct_prediction = tf.equal(tf.argmax(tf_softmax,1), tf.argmax(tf_softmax_correct,1))
tf_accuracy = tf.reduce_mean(tf.cast(tf_correct_prediction, "float"))
saver = tf.train.Saver([tf_weight,tf_bias])
# Initialize and run
init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init)
THRESHOLD = 0.98
saved = False
print("...")
# Run the training
for i in range(100):
sess.run(tf_train_step, feed_dict={tf_in: x_train, tf_softmax_correct: y_train_onehot})
result = sess.run(tf_accuracy, feed_dict={tf_in: x_test, tf_softmax_correct: y_test_onehot})
# If it's well trained on this iteration, save it. We just need one save.
if result > THRESHOLD and saved == False:
saved = True
print "saving result {}".format(result)
saver.save(sess,TMPDir +"/savedSess")
Только изменения, внесенные генерировали с использованием выборочных данных Iris, устанавливая пороговое значение или доверительный интервал для сеанса. Если закончится это ПОРОГ, сохраните сеанс. После первого шага модель должна быть обучена и сохранена.
Шаг 2:
Восстановление сохраненной сессии, и запустить обучающие данные через него.
#!/usr/bin/env python
import tensorflow as tf
import numpy as np
from numpy import genfromtxt
import sklearn
# Convert to one hot
def convertOneHot(data):
y=np.array([int(i[0]) for i in data])
y_onehot=[0]*len(y)
for i,j in enumerate(y):
y_onehot[i]=[0]*(y.max() + 1)
y_onehot[i][j]=1
return (y,y_onehot)
data = genfromtxt('cs-training.csv',delimiter=',') # Training data
test_data = genfromtxt('cs-test.csv',delimiter=',') # Test data
x_train=np.array([ i[1::] for i in data])
y_train,y_train_onehot = convertOneHot(data)
x_test=np.array([ i[1::] for i in test_data])
y_test,y_test_onehot = convertOneHot(test_data)
A=data.shape[1]-1 # Number of features, Note first is y
B=len(y_train_onehot[0])
tf_in = tf.placeholder("float", [None, A]) # Features
tf_weight = tf.Variable(tf.zeros([A,B]))
tf_bias = tf.Variable(tf.zeros([B]))
tf_softmax = tf.nn.softmax(tf.matmul(tf_in,tf_weight) + tf_bias)
# Training via backpropagation
tf_softmax_correct = tf.placeholder("float", [None,B])
tf_cross_entropy = -tf.reduce_sum(tf_softmax_correct*tf.log(tf_softmax))
# Train using tf.train.GradientDescentOptimizer
tf_train_step = tf.train.GradientDescentOptimizer(0.01).minimize(tf_cross_entropy)
# Add accuracy checking nodes
tf_correct_prediction = tf.equal(tf.argmax(tf_softmax,1), tf.argmax(tf_softmax_correct,1))
tf_accuracy = tf.reduce_mean(tf.cast(tf_correct_prediction, "float"))
saver = tf.train.Saver([tf_weight,tf_bias])
# Initialize and run
init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init)
TMPDir='./tensorTMP'
saver.restore(sess, TMPDir + '/savedSess')
ans = sess.run(tf_softmax, feed_dict={tf_in: x_test, tf_softmax_correct: y_test_onehot})
print ans
Обратите внимание, ваш выход будет выглядеть следующим образом ...
[[ 6.17585704e-02 8.63590300e-01 7.46511072e-02]
[ 9.98804331e-01 1.19561062e-03 3.8e-13]
[ 1.52018686e-07 4.49650863e-04 9.99550164e-01]
Это работает на данных, предоставленных Iris sklearn, но он не работает для моего проекта. Он не возвращает ничего, кроме 'nan' для каждого места, где должна быть 1, 0 или даже вероятность (на что я надеюсь, что она вернется больше всего). – NickTheInventor