Я пытаюсь создать трубопровод, который берет мою DataFrame информацию о задержке полета и запускает на ней случайный лес. Я довольно новичок в MLLib и не могу понять, где я ошибаюсь в своем коде ниже.PySpark Training Случайный лесной трубопровод
Мой DataFrame считывается из паркетной файла с этим форматом:
Table before Encoding
+-----+-----+---+---+----+--------+-------+------+----+-----+-------+
|Delay|Month|Day|Dow|Hour|Distance|Carrier|Origin|Dest|HDays|Delayed|
+-----+-----+---+---+----+--------+-------+------+----+-----+-------+
| -8| 8| 4| 2| 11| 224| OO| GEG| SEA| 31| 0|
| -12| 8| 5| 3| 11| 224| OO| GEG| SEA| 32| 0|
| -9| 8| 6| 4| 11| 224| OO| GEG| SEA| 32| 0|
+-----+-----+---+---+----+--------+-------+------+----+-----+-------+
only showing top 3 rows
Я тогда перейти к OneHotEncode категориальные колонны, и сочетают в себе все функции в Features
колонке (Delayed
это то, что я пытаюсь предсказывать). Вот код, который:
import os
from pyspark.sql import SparkSession
from pyspark.ml import Pipeline
from pyspark.ml.feature import OneHotEncoder, StringIndexer, VectorAssembler
from pyspark.ml.classification import LogisticRegression, RandomForestClassifier
spark = SparkSession.builder \
.master('local[3]') \
.appName('Flight Delay') \
.getOrCreate()
# read in the pre-processed DataFrame from the parquet file
base_dir = '/home/william/Projects/flight-delay/data/parquet'
flights_df = spark.read.parquet(os.path.join(base_dir, 'flights.parquet'))
print('Table before Encoding')
flights_df.show(3)
# categorical columns that will be OneHotEncoded
cat_cols = ['Month', 'Day', 'Dow', 'Hour', 'Carrier', 'Dest']
# numeric columns that will be a part of features used for prediction
non_cat_cols = ['Delay', 'Distance', 'HDays']
# NOTE: StringIndexer does not have multiple col support yet (PR #9183)
# Create StringIndexer for each categorical feature
cat_indexers = [ StringIndexer(inputCol=col, outputCol=col+'_Index')
for col in cat_cols ]
# OneHotEncode each categorical feature after being StringIndexed
encoders = [ OneHotEncoder(dropLast=False, inputCol=indexer.getOutputCol(),
outputCol=indexer.getOutputCol()+'_Encoded')
for indexer in cat_indexers ]
# Assemble all feature columns (numeric + categorical) into `features` col
assembler = VectorAssembler(inputCols=[encoder.getOutputCol()
for encoder in encoders] + non_cat_cols,
outputCol='Features')
# Train a random forest model
rf = RandomForestClassifier(labelCol='Delayed',featuresCol='Features', numTrees=10)
# Chain indexers, encoders, and forest into one pipeline
pipeline = Pipeline(stages=[ *cat_indexers, *encoders, assembler, rf ])
# split the data into training and testing splits (70/30 rn)
(trainingData, testData) = flights_df.randomSplit([0.7, 0.3])
# Train the model -- which also runs indexers and coders
model = pipeline.fit(trainingData)
# use model to make predictions
precitions = model.trainsform(testData)
predictions.show(10)
Когда я запускаю это я получаю Py4JJavaError: An error occurred while calling o46.fit. : java.lang.ClassCastException: java.lang.Integer cannot be cast to java.lang.Double
Я очень признателен за любую помощь!
Действительно (хотя и не может найти комментарии, которые Вы имеете в виду). Есть еще несколько аналогичных досадных и недокументированных функций Spark ML/MLlib - см. Здесь: https://www.nodalpoint.com/spark-classification/ – desertnaut