Я хотел использовать масштабирование и закончил тестирование своих документов Paraboloid example from OpenMDAO 0.x с OpenMDAO 1.x, но я получаю странные результаты с или без масштабирования. Вот код:Оптимизация параболоидов, требующая масштабирования
from __future__ import print_function import sys from openmdao.api import IndepVarComp, Component, Problem, Group, ScipyOptimizer class Paraboloid(Component): def __init__(self): super(Paraboloid, self).__init__() self.add_param('x', val=0.0) self.add_param('y', val=0.0) self.add_output('f_xy', val=0.0) def solve_nonlinear(self, params, unknowns, resids): x = params['x'] y = params['y'] #unknowns['f_xy'] = (x-3.0)**2 + x*y + (y+4.0)**2 - 3.0 unknowns['f_xy'] = (1000.*x-3.)**2 + (1000.*x)*(0.01*y) + (0.01*y+4.)**2 - 3. def linearize(self, params, unknowns, resids): """ Jacobian for our paraboloid.""" x = params['x'] y = params['y'] J = {} #J['f_xy', 'x'] = 2.0*x - 6.0 + y #J['f_xy', 'y'] = 2.0*y + 8.0 + x J['f_xy', 'x'] = 2000000.0*x - 6000.0 + 10.0*y J['f_xy', 'y'] = 0.0002*y + 0.08 + 10.0*x return J if __name__ == "__main__": top = Problem() root = top.root = Group() root.add('p1', IndepVarComp('x', 3.0)) root.add('p2', IndepVarComp('y', -4.0)) root.add('p', Paraboloid()) root.connect('p1.x', 'p.x') root.connect('p2.y', 'p.y') top.driver = ScipyOptimizer() top.driver.options['optimizer'] = 'SLSQP' top.driver.add_desvar('p1.x', lower=-1000, upper=1000, scaler=0.001) top.driver.add_desvar('p2.y', lower=-1000, upper=1000, scaler=1000.) top.driver.add_objective('p.f_xy') top.setup() top.run() print('\n') print('Minimum of %f found at (%f, %f)' % (top['p.f_xy'], top['p.x'], top['p.y']))
, когда я запускаю его на моей системе, это дает:
2.7.11 |Anaconda 2.5.0 (64-bit)| (default, Jan 29 2016, 14:26:21) [MSC v.1500 64 bit (AMD64)] Python Type "help", "copyright", "credits" or "license" for more information. [evaluate paraboloid_optimize_scaled.py] ############################################## Setup: Checking for potential issues... No recorders have been specified, so no data will be saved. Setup: Check complete. ############################################## Optimization terminated successfully. (Exit mode 0) Current function value: [ 8981902.27846645] Iterations: 1 Function evaluations: 12 Gradient evaluations: 1 Optimization Complete ----------------------------------- Minimum of 8981902.278466 found at (3.000000, -4.000000)
ли я что-то пропустил?
какая версия OpenMDAO 1.x вы работаете? –
На данный момент, я бы сказал, ГОЛОВА. – relf