Я новичок в R, и я работаю над побочным проектом в своих собственных целях. У меня есть эти данные (воспроизводимость dput этого в конце вопроса):Реорганизация данных в R с «логином» «logout» times
X datetime user state
1 1 2016-02-19 19:13:26 User1 joined
2 2 2016-02-19 19:21:18 User2 joined
3 3 2016-02-19 19:21:33 User1 joined
4 4 2016-02-19 19:35:38 User1 joined
5 5 2016-02-19 19:44:15 User1 joined
6 6 2016-02-19 19:48:55 User1 joined
7 7 2016-02-19 19:52:40 User1 joined
8 8 2016-02-19 19:53:15 User3 joined
9 9 2016-02-19 20:02:34 User3 joined
10 10 2016-02-19 20:13:48 User3 joined
19 637 2016-02-19 19:13:32 User1 left
20 638 2016-02-19 19:25:26 User1 left
21 639 2016-02-19 19:30:30 User2 left
22 640 2016-02-19 19:42:16 User1 left
23 641 2016-02-19 19:47:59 User1 left
24 642 2016-02-19 19:51:06 User1 left
25 643 2016-02-19 20:02:26 User3 left
Я хочу, чтобы она выглядела так:
user joined left
1 User1 2016-02-19 19:13:26 2016-02-19 19:13:32
2 User2 2016-02-19 19:21:18 2016-02-19 19:30:30
3 User3 2016-02-19 19:53:15 2016-02-19 20:02:26
4 User1 2016-02-19 19:21:33 2016-02-19 19:25:26
.
.
.
Я смотрю на tidyr, поскольку есть некоторые изменения формы очевидно, но я не могу окунуться в то, что именно нужно сделать. Возможно ли это (без циклирования/массивного количества процедурного кода)? Проблема, которую я не могу понять, как обойти, заключается в том, что нет никакого способа узнать, что конкретная «левая» запись должна быть присоединена к определенной «объединенной» записи. Примеры, которые я могу найти, включают статический месяц или день, по которому собираются другие значения. Я должен добавить, что не обязательно гарантировать, что все записи гарантированно имеют «левое» значение (пользователь может быть «присоединен»).
Вот вывод dput выборки данных:
> dput(samp)
structure(list(X = c(1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L,
11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 637L, 638L, 639L, 640L,
641L, 642L, 643L, 644L, 645L, 646L, 647L, 648L, 649L, 650L, 651L
), datetime = structure(c(1L, 3L, 4L, 7L, 9L, 11L, 13L, 14L,
16L, 18L, 21L, 22L, 23L, 26L, 27L, 30L, 32L, 33L, 2L, 5L, 6L,
8L, 10L, 12L, 15L, 17L, 19L, 20L, 24L, 25L, 28L, 29L, 31L), .Label = c("2016-02-19 19:13:26",
"2016-02-19 19:13:32", "2016-02-19 19:21:18", "2016-02-19 19:21:33",
"2016-02-19 19:25:26", "2016-02-19 19:30:30", "2016-02-19 19:35:38",
"2016-02-19 19:42:16", "2016-02-19 19:44:15", "2016-02-19 19:47:59",
"2016-02-19 19:48:55", "2016-02-19 19:51:06", "2016-02-19 19:52:40",
"2016-02-19 19:53:15", "2016-02-19 20:02:26", "2016-02-19 20:02:34",
"2016-02-19 20:13:38", "2016-02-19 20:13:48", "2016-02-19 20:42:27",
"2016-02-19 20:48:22", "2016-02-19 20:49:31", "2016-02-19 20:59:58",
"2016-02-19 21:06:20", "2016-02-19 21:10:43", "2016-02-19 21:11:13",
"2016-02-19 21:11:15", "2016-02-19 21:11:22", "2016-02-19 21:17:33",
"2016-02-19 22:02:45", "2016-02-19 22:05:18", "2016-02-19 22:05:37",
"2016-02-19 22:05:47", "2016-02-19 22:30:30"), class = "factor"),
user = structure(c(1L, 2L, 1L, 1L, 1L, 1L, 1L, 3L, 3L, 3L,
3L, 4L, 1L, 1L, 4L, 4L, 4L, 3L, 1L, 1L, 2L, 1L, 1L, 1L, 3L,
3L, 3L, 1L, 4L, 1L, 1L, 4L, 4L), .Label = c("User1", "User2",
"User3", "User4"), class = "factor"), state = structure(c(1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L), .Label = c("joined", "left"), class = "factor")), .Names = c("X",
"datetime", "user", "state"), class = "data.frame", row.names = c(NA,
-33L))
Еще немного info: можно с уверенностью предположить, что для всех, кроме последней «объединенной» записи, есть соответствующие «левые» значения (это неверно в наборе данных примера. Я сократил реальные данные во что-то меньшее, чтобы публиковать здесь). Похоже, что вы могли бы отрезать набор данных пользователем/статусом, а затем совместить дату, когда каждый пользователь ушел, чтобы решить эту проблему. 'ts <-spread (test, state, datetime)' получает набор данных, подготовленный в значительной степени. –
Обозначает ли X столбец здесь, например. как порядковый номер? –
Нет, его можно игнорировать. –