Большое спасибо Хайме за его решение (даже если я не очень понимаю, как это делается барицентрическое вычисление ...)
Здесь вы найдете пример адаптированы из его дел в 2D:
import scipy.interpolate as spint
import scipy.spatial.qhull as qhull
import numpy as np
def interp_weights(xy, uv,d=2):
tri = qhull.Delaunay(xy)
simplex = tri.find_simplex(uv)
vertices = np.take(tri.simplices, simplex, axis=0)
temp = np.take(tri.transform, simplex, axis=0)
delta = uv - temp[:, d]
bary = np.einsum('njk,nk->nj', temp[:, :d, :], delta)
return vertices, np.hstack((bary, 1 - bary.sum(axis=1, keepdims=True)))
def interpolate(values, vtx, wts):
return np.einsum('nj,nj->n', np.take(values, vtx), wts)
m, n = 101,201
mi, ni = 1001,2001
[Y,X]=np.meshgrid(np.linspace(0,1,n),np.linspace(0,2,m))
[Yi,Xi]=np.meshgrid(np.linspace(0,1,ni),np.linspace(0,2,mi))
xy=np.zeros([X.shape[0]*X.shape[1],2])
xy[:,0]=Y.flatten()
xy[:,1]=X.flatten()
uv=np.zeros([Xi.shape[0]*Xi.shape[1],2])
uv[:,0]=Yi.flatten()
uv[:,1]=Xi.flatten()
values=np.cos(2*X)*np.cos(2*Y)
#Computed once and for all !
vtx, wts = interp_weights(xy, uv)
valuesi=interpolate(values.flatten(), vtx, wts)
valuesi=valuesi.reshape(Xi.shape[0],Xi.shape[1])
print "interpolation error: ",np.mean(valuesi-np.cos(2*Xi)*np.cos(2*Yi))
print "interpolation uncertainty: ",np.std(valuesi-np.cos(2*Xi)*np.cos(2*Yi))
можно прикладной преобразованию изображения, такие как отображение изображений с udge ускорить
Вы не можете использовать то же определение функции, что и новые координаты, будут меняться на каждой итерации, но вы можете вычислить триангуляцию Один раз для всех.
import scipy.interpolate as spint
import scipy.spatial.qhull as qhull
import numpy as np
import time
# Definition of the fast interpolation process. May be the Tirangulation process can be removed !!
def interp_tri(xy):
tri = qhull.Delaunay(xy)
return tri
def interpolate(values, tri,uv,d=2):
simplex = tri.find_simplex(uv)
vertices = np.take(tri.simplices, simplex, axis=0)
temp = np.take(tri.transform, simplex, axis=0)
delta = uv- temp[:, d]
bary = np.einsum('njk,nk->nj', temp[:, :d, :], delta)
return np.einsum('nj,nj->n', np.take(values, vertices), np.hstack((bary, 1.0 - bary.sum(axis=1, keepdims=True))))
m, n = 101,201
mi, ni = 101,201
[Y,X]=np.meshgrid(np.linspace(0,1,n),np.linspace(0,2,m))
[Yi,Xi]=np.meshgrid(np.linspace(0,1,ni),np.linspace(0,2,mi))
xy=np.zeros([X.shape[0]*X.shape[1],2])
xy[:,1]=Y.flatten()
xy[:,0]=X.flatten()
uv=np.zeros([Xi.shape[0]*Xi.shape[1],2])
# creation of a displacement field
uv[:,1]=0.5*Yi.flatten()+0.4
uv[:,0]=1.5*Xi.flatten()-0.7
values=np.zeros_like(X)
values[50:70,90:150]=100.
#Computed once and for all !
tri = interp_tri(xy)
t0=time.time()
for i in range(0,100):
values_interp_Qhull=interpolate(values.flatten(),tri,uv,2).reshape(Xi.shape[0],Xi.shape[1])
t_q=(time.time()-t0)/100
t0=time.time()
values_interp_griddata=spint.griddata(xy,values.flatten(),uv,fill_value=0).reshape(values.shape[0],values.shape[1])
t_g=time.time()-t0
print "Speed-up:", t_g/t_q
print "Mean error: ",(values_interp_Qhull-values_interp_griddata).mean()
print "Standard deviation: ",(values_interp_Qhull-values_interp_griddata).std()
На моем ноутбуке ускорение составляет от 20 до 40x!
Надежда, которая может помочь кому-то
метод интерполяции Что вы используете, то есть '' nearest', linear' ...? Кроме того, сколько у вас очков в нерегулярной сетке? – Jaime
Я использую линейную интерполяцию (ближайшая не будет достаточно). Исходная сетка (x, y, z) состоит из 3,5 миллионов точек. Новая сетка (x1, y1, z1) состоит из примерно 300 000 точек. Линейная интерполяция занимает ~ 30 с на ноутбуке с процессором i7 со здоровым объемом ОЗУ. У меня есть 6 наборов значений для интерполяции, так что это является основным узким местом для меня. –