Я практиковал Assembler давно, и мне хотелось бы понять простую программу (я генерирую код ассемблера из кода C), который добавляет 2 вектора (фактически 2 массива) и сохраняет результат в другом векторе (выходной массив). Моя цель - изучить вектологию. Для этого я использую gcc-4.9 под Debian Wheezy на i7-ядерном процессоре.Понимание простой программы осанки
Здесь код С фрагмент (не векторизованы версия):
#include <stdio.h>
#define SIZE 10000
void test(double *a, double *b, double *c)
{
int i;
for (i = 0; i < SIZE; i++)
{
c[i] = a[i] + b[i];
}
}
int main()
{
int i;
double tab1[SIZE];
double tab2[SIZE];
double tab3[SIZE];
for (i = 0; i < SIZE; i++)
{
tab1[i] = i;
tab2[i] = i;
tab3[i] = 0;
}
test(tab1, tab2, tab3);
for (i = 0; i < SIZE; i++)
printf(" tab3[%d] = %f\n", i, tab3[i]);
return 0;
}
сгенерировать Ассемблер код с AT & T синтаксис:
gcc -std=c99 -c main_no_vectorized.c -O3 -S -o main_no_vectorized.s
Вот код сборки:
.file "main_no_vectorized.c"
.section .text.unlikely,"ax",@progbits
.LCOLDB0:
.text
.LHOTB0:
.p2align 4,,15
.globl test
.type test, @function
test:
.LFB3:
.cfi_startproc
leaq 16(%rdx), %rax
leaq 16(%rsi), %rcx
cmpq %rax, %rsi
setae %r8b
cmpq %rcx, %rdx
setae %cl
orb %cl, %r8b
je .L7
cmpq %rax, %rdi
leaq 16(%rdi), %rax
setae %cl
cmpq %rax, %rdx
setae %al
orb %al, %cl
je .L7
testb $8, %dil
pushq %r12
.cfi_def_cfa_offset 16
.cfi_offset 12, -16
pushq %rbp
.cfi_def_cfa_offset 24
.cfi_offset 6, -24
pushq %rbx
.cfi_def_cfa_offset 32
.cfi_offset 3, -32
je .L8
movsd (%rdi), %xmm0
movl $9998, %ebp
movl $4999, %r9d
movl $9999, %r12d
movl $1, %r8d
movl $1, %ebx
addsd (%rsi), %xmm0
movsd %xmm0, (%rdx)
.L3:
salq $3, %r8
xorl %eax, %eax
xorl %ecx, %ecx
leaq (%rdi,%r8), %r11
leaq (%rsi,%r8), %r10
addq %rdx, %r8
.p2align 4,,10
.p2align 3
.L4:
movupd (%r10,%rax), %xmm0
addl $1, %ecx
addpd (%r11,%rax), %xmm0
movups %xmm0, (%r8,%rax)
addq $16, %rax
cmpl %r9d, %ecx
jb .L4
cmpl %ebp, %r12d
leal (%rbx,%rbp), %eax
je .L1
cltq
movsd (%rdi,%rax,8), %xmm0
addsd (%rsi,%rax,8), %xmm0
movsd %xmm0, (%rdx,%rax,8)
.L1:
popq %rbx
.cfi_remember_state
.cfi_restore 3
.cfi_def_cfa_offset 24
popq %rbp
.cfi_restore 6
.cfi_def_cfa_offset 16
popq %r12
.cfi_restore 12
.cfi_def_cfa_offset 8
ret
.p2align 4,,10
.p2align 3
.L8:
.cfi_restore_state
movl $10000, %ebp
movl $5000, %r9d
movl $10000, %r12d
xorl %r8d, %r8d
xorl %ebx, %ebx
jmp .L3
.L7:
.cfi_def_cfa_offset 8
.cfi_restore 3
.cfi_restore 6
.cfi_restore 12
xorl %eax, %eax
.p2align 4,,10
.p2align 3
.L2:
movsd (%rdi,%rax), %xmm0
addsd (%rsi,%rax), %xmm0
movsd %xmm0, (%rdx,%rax)
addq $8, %rax
cmpq $80000, %rax
jne .L2
rep ret
.cfi_endproc
.LFE3:
.size test, .-test
.section .text.unlikely
.LCOLDE0:
.text
.LHOTE0:
.section .rodata.str1.1,"aMS",@progbits,1
.LC3:
.string " tab3[%d] = %f\n"
.section .text.unlikely
.LCOLDB4:
.section .text.startup,"ax",@progbits
.LHOTB4:
.p2align 4,,15
.globl main
.type main, @function
main:
.LFB4:
.cfi_startproc
pushq %rbx
.cfi_def_cfa_offset 16
.cfi_offset 3, -16
xorl %eax, %eax
subq $240016, %rsp
.cfi_def_cfa_offset 240032
movdqa .LC2(%rip), %xmm3
leaq 32(%rsp), %rcx
leaq 80032(%rsp), %rdx
movdqa .LC1(%rip), %xmm1
.p2align 4,,10
.p2align 3
.L21:
pshufd $238, %xmm1, %xmm0
cvtdq2pd %xmm1, %xmm2
paddd %xmm3, %xmm1
movaps %xmm2, 16(%rsp,%rax)
cvtdq2pd %xmm0, %xmm0
movaps %xmm2, 80016(%rsp,%rax)
movaps %xmm0, (%rcx,%rax)
movaps %xmm0, (%rdx,%rax)
addq $32, %rax
cmpq $80000, %rax
jne .L21
leaq 160016(%rsp), %rdi
movl $80000, %edx
xorl %esi, %esi
call memset
xorl %eax, %eax
.p2align 4,,10
.p2align 3
.L22:
movapd 16(%rsp,%rax), %xmm0
addpd 80016(%rsp,%rax), %xmm0
movaps %xmm0, 160016(%rsp,%rax)
addq $16, %rax
cmpq $80000, %rax
jne .L22
xorl %ebx, %ebx
.p2align 4,,10
.p2align 3
.L23:
movsd 160016(%rsp,%rbx,8), %xmm4
movl %ebx, %esi
movl $.LC3, %edi
movl $1, %eax
addq $1, %rbx
movapd %xmm4, %xmm0
movsd %xmm4, 8(%rsp)
call printf
cmpq $10000, %rbx
jne .L23
addq $240016, %rsp
.cfi_def_cfa_offset 16
xorl %eax, %eax
popq %rbx
.cfi_def_cfa_offset 8
ret
.cfi_endproc
.LFE4:
.size main, .-main
.section .text.unlikely
.LCOLDE4:
.section .text.startup
.LHOTE4:
.section .rodata.cst16,"aM",@progbits,16
.align 16
.LC1:
.long 0
.long 1
.long 2
.long 3
.align 16
.LC2:
.long 4
.long 4
.long 4
.long 4
.ident "GCC: (Debian 4.9.1-16) 4.9.1"
.section .note.GNU-stack,"",@progbits
Не могли бы вы объяснить мне основные шаги этого выше кода сборки в связи с C код, в частности, функцию «тест», цикл инициализации в основной функции и передаваемые параметры (т. е. где указаны команды push и pop для стека) и эффективное добавление массивов «a» и «b»?
Что соответствует сегментам .L2, .L3, ...? есть ли отношение к кэшу L2, кэш L3?
Извините за эти основные вопросы, но я начинаю с ассемблера Intel x86_64.
Спасибо за вашу драгоценную помощь
Есть две вещи, которые помогут вам понять, что происходит. Во-первых, когда вы сбрасываете код сборки, вам нужно попытаться уменьшить оптимизацию до -O1 (или вообще нет), если есть заявления, которые, похоже, не имеют никакого смысла. Тяжелая оптимизация, в то время как отличная для компилятора, создает некоторый сборщик, который порой распознается только теми, кто пишет процедуры оптимизации. Затем, если прошло некоторое время с тех пор, как вы изучили сборку (например, переместитесь с 32-битного на 64-разрядный), вы столкнетесь с различиями в системных вызовах и в вызове. –