2014-12-23 3 views
8

Я работаю с пользовательской проекцией Matplotlib и не понимаю, как делать векторные преобразования внутри проекции (Примечание: Пользовательская проекция - это азимутальная проекция равных площадей Ламберта с экваториальным аспект).Matplotlib custom projection: Как преобразовать точки

В моем примере я хочу преобразовать точку, которая опускается на 30 ° к северу (что означает, что точка равна 60 ° с. Ш. Экватора) в точку, которая опускается на 30 ° восточной долготы (что означает, что она лежит на 60 ° восточной долготы первичного меридиана). Я хочу сделать это с помощью матрицы векторного преобразования, чтобы в будущем выполнить более сложные вычисления с программой. Но я действительно не понимаю, как получить длину преобразованного вектора справа (или получить правильную долготу и широту этой точки).

enter image description here

Я также изучает этот пример, но он использует несколько иной подход к преобразованиям: https://github.com/joferkington/mplstereonet/blob/master/mplstereonet/stereonet_math.py

TestFile:

import matplotlib 
import matplotlib.pyplot as plt 
import numpy as np 
from numpy import pi, sin, cos, sqrt, tan, arctan2, arccos 

#Internal imports 
import projection 

def transformVector(geom, raxis, rot): 
    """ 
    Input: 
    geom: single point geometry (vector) 
    raxis: rotation axis as a vector (vector) 
    ([0][1][2]) = (x,y,z) = (Longitude, Latitude, Down) 
    rot: rotation in radian 

    Returns: 
    Array: a vector that has been transformed 
    """ 
    sr = sin(rot) 
    cr = cos(rot) 
    omcr = 1.0 - cr 
    tf = np.array([ 
     [cr + raxis[0]**2 * omcr, 
     -raxis[2] * sr + raxis[0] * raxis[1] * omcr, 
     raxis[1] * sr + raxis[0] * raxis[2] * omcr], 
     [raxis[2] * sr + raxis[1] * raxis[0] * omcr, 
     cr + raxis[1]**2 * omcr, 
     -raxis[0] * sr + raxis[1] * raxis[2] * omcr], 
     [-raxis[1] * sr + raxis[2] * raxis[0] * omcr, 
     raxis[0] * sr + raxis[2] * raxis[1] * omcr, 
     cr + raxis[2]**2 * omcr]]) 

    ar = np.dot(geom, tf) 
    return ar 

def sphericalToVector(inp_ar): 
    """ 
    Convert a spherical measurement into a vector in cartesian space 
    [0] = x (+) east (-) west 
    [1] = y (+) north (-) south 
    [2] = z (+) down 
    """ 
    ar = np.array([0.0, 0.0, 0.0]) 
    ar[0] = sin(inp_ar[0]) * cos(inp_ar[1]) 
    ar[1] = cos(inp_ar[0]) * cos(inp_ar[1]) 
    ar[2] = sin(inp_ar[1]) 
    return ar 

def vectorToGeogr(vect): 
    """ 
    Returns: 
    Array with the components [0] longitude, [1] latitude 
    """ 
    ar = np.array([0.0, 0.0]) 
    ar[0] = np.arctan2(vect[0], vect[2]) 
    ar[1] = np.arctan2(vect[1], vect[2]) 
    ar = ar * pi/2 
    return ar 

def plotPoint(dip): 
    """ 
    Testfunction for converting, transforming and plotting a point 
    """ 
    plt.subplot(111, projection="lmbrt_equ_area_equ_aspect") 

    #Convert to radians 
    dip_rad = np.radians(dip) 

    #Set rotation to azimuth and convert dip to latitude on north-south axis 
    rot = dip_rad[0] 
    dip_lat = pi/2 - dip_rad[1] 
    plt.plot(0, dip_lat, "ro") 
    print(dip_lat, rot) 

    #Convert the dip into a vector along the north-south axis 
    #x = 0, y = dip 
    vect = sphericalToVector([0, dip_lat]) 
    print(vect, np.linalg.norm(vect)) 

    #Transfrom the dip to its proper azimuth 
    tvect = transformVector(vect, [0,0,1], rot) 
    print(tvect, np.linalg.norm(tvect)) 

    #Transform the vector back to geographic coordinates 
    geo = vectorToGeogr(tvect) 
    print(geo) 
    plt.plot(geo[0], geo[1], "bo") 

    plt.grid(True) 
    plt.show() 

datapoint = np.array([090.0,30]) 
plotPoint(datapoint) 

Пользовательские проекции:

import matplotlib 
from matplotlib.axes import Axes 
from matplotlib.patches import Circle 
from matplotlib.path import Path 
from matplotlib.ticker import NullLocator, Formatter, FixedLocator 
from matplotlib.transforms import Affine2D, BboxTransformTo, Transform 
from matplotlib.projections import register_projection 
import matplotlib.spines as mspines 
import matplotlib.axis as maxis 
import matplotlib.pyplot as plt 
import numpy as np 
from numpy import pi, sin, cos, sqrt, arctan2 
# This example projection class is rather long, but it is designed to 
# illustrate many features, not all of which will be used every time. 
# It is also common to factor out a lot of these methods into common 
# code used by a number of projections with similar characteristics 
# (see geo.py). 

class LambertAxes(Axes): 
    """ 
    A custom class for the Lambert azimuthal equal-area projection 
    with equatorial aspect. In geosciences this is also referre to 
    as a "Schmidt plot". For more information see: 
    http://pubs.er.usgs.gov/publication/pp1395 
    """ 
    # The projection must specify a name. This will be used be the 
    # user to select the projection, i.e. ``subplot(111, 
    # projection='lmbrt_equ_area_equ_aspect')``. 
    name = 'lmbrt_equ_area_equ_aspect' 

    def __init__(self, *args, **kwargs): 
     Axes.__init__(self, *args, **kwargs) 
     self.set_aspect(1, adjustable='box', anchor='C') 
     self.cla() 

    def _init_axis(self): 
     self.xaxis = maxis.XAxis(self) 
     self.yaxis = maxis.YAxis(self) 
     # Do not register xaxis or yaxis with spines -- as done in 
     # Axes._init_axis() -- until LambertAxes.xaxis.cla() works. 
     # self.spines['hammer'].register_axis(self.yaxis) 
     self._update_transScale() 

    def cla(self): 
     """ 
     Override to set up some reasonable defaults. 
     """ 
     # Don't forget to call the base class 
     Axes.cla(self) 

     # Set up a default grid spacing 
     self.set_longitude_grid(10) 
     self.set_latitude_grid(10) 
     self.set_longitude_grid_ends(80) 

     # Turn off minor ticking altogether 
     self.xaxis.set_minor_locator(NullLocator()) 
     self.yaxis.set_minor_locator(NullLocator()) 

     # Do not display ticks -- we only want gridlines and text 
     self.xaxis.set_ticks_position('none') 
     self.yaxis.set_ticks_position('none') 

     # The limits on this projection are fixed -- they are not to 
     # be changed by the user. This makes the math in the 
     # transformation itself easier, and since this is a toy 
     # example, the easier, the better. 
     Axes.set_xlim(self, -pi/2, pi/2) 
     Axes.set_ylim(self, -pi, pi) 

    def _set_lim_and_transforms(self): 
     """ 
     This is called once when the plot is created to set up all the 
     transforms for the data, text and grids. 
     """ 
     # There are three important coordinate spaces going on here: 
     # 
     # 1. Data space: The space of the data itself 
     # 
     # 2. Axes space: The unit rectangle (0, 0) to (1, 1) 
     #  covering the entire plot area. 
     # 
     # 3. Display space: The coordinates of the resulting image, 
     #  often in pixels or dpi/inch. 

     # This function makes heavy use of the Transform classes in 
     # ``lib/matplotlib/transforms.py.`` For more information, see 
     # the inline documentation there. 

     # The goal of the first two transformations is to get from the 
     # data space (in this case longitude and latitude) to axes 
     # space. It is separated into a non-affine and affine part so 
     # that the non-affine part does not have to be recomputed when 
     # a simple affine change to the figure has been made (such as 
     # resizing the window or changing the dpi). 

     # 1) The core transformation from data space into 
     # rectilinear space defined in the LambertEqualAreaTransform class. 
     self.transProjection = self.LambertEqualAreaTransform() 

     # 2) The above has an output range that is not in the unit 
     # rectangle, so scale and translate it so it fits correctly 
     # within the axes. The peculiar calculations of xscale and 
     # yscale are specific to a Aitoff-Hammer projection, so don't 
     # worry about them too much. 
     xscale = sqrt(2.0) * sin(0.5 * pi) 
     yscale = sqrt(2.0) * sin(0.5 * pi) 
     self.transAffine = Affine2D() \ 
      .scale(0.5/xscale, 0.5/yscale) \ 
      .translate(0.5, 0.5) 

     # 3) This is the transformation from axes space to display 
     # space. 
     self.transAxes = BboxTransformTo(self.bbox) 

     # Now put these 3 transforms together -- from data all the way 
     # to display coordinates. Using the '+' operator, these 
     # transforms will be applied "in order". The transforms are 
     # automatically simplified, if possible, by the underlying 
     # transformation framework. 
     self.transData = \ 
      self.transProjection + \ 
      self.transAffine + \ 
      self.transAxes 

     # The main data transformation is set up. Now deal with 
     # gridlines and tick labels. 

     # Longitude gridlines and ticklabels. The input to these 
     # transforms are in display space in x and axes space in y. 
     # Therefore, the input values will be in range (-xmin, 0), 
     # (xmax, 1). The goal of these transforms is to go from that 
     # space to display space. The tick labels will be offset 4 
     # pixels from the equator. 
     self._xaxis_pretransform = \ 
      Affine2D() \ 
      .scale(1.0, pi) \ 
      .translate(0.0, -pi) 
     self._xaxis_transform = \ 
      self._xaxis_pretransform + \ 
      self.transData 
     self._xaxis_text1_transform = \ 
      Affine2D().scale(1.0, 0.0) + \ 
      self.transData + \ 
      Affine2D().translate(0.0, 4.0) 
     self._xaxis_text2_transform = \ 
      Affine2D().scale(1.0, 0.0) + \ 
      self.transData + \ 
      Affine2D().translate(0.0, -4.0) 

     # Now set up the transforms for the latitude ticks. The input to 
     # these transforms are in axes space in x and display space in 
     # y. Therefore, the input values will be in range (0, -ymin), 
     # (1, ymax). The goal of these transforms is to go from that 
     # space to display space. The tick labels will be offset 4 
     # pixels from the edge of the axes ellipse. 
     yaxis_stretch = Affine2D().scale(pi * 2.0, 1.0).translate(-pi, 0.0) 
     yaxis_space = Affine2D().scale(1.0, 1.0) 
     self._yaxis_transform = \ 
      yaxis_stretch + \ 
      self.transData 
     yaxis_text_base = \ 
      yaxis_stretch + \ 
      self.transProjection + \ 
      (yaxis_space + \ 
      self.transAffine + \ 
      self.transAxes) 
     self._yaxis_text1_transform = \ 
      yaxis_text_base + \ 
      Affine2D().translate(-8.0, 0.0) 
     self._yaxis_text2_transform = \ 
      yaxis_text_base + \ 
      Affine2D().translate(8.0, 0.0) 

    def get_xaxis_transform(self,which='grid'): 
     """ 
     Override this method to provide a transformation for the 
     x-axis grid and ticks. 
     """ 
     assert which in ['tick1','tick2','grid'] 
     return self._xaxis_transform 

    def get_xaxis_text1_transform(self, pixelPad): 
     """ 
     Override this method to provide a transformation for the 
     x-axis tick labels. 

     Returns a tuple of the form (transform, valign, halign) 
     """ 
     return self._xaxis_text1_transform, 'bottom', 'center' 

    def get_xaxis_text2_transform(self, pixelPad): 
     """ 
     Override this method to provide a transformation for the 
     secondary x-axis tick labels. 

     Returns a tuple of the form (transform, valign, halign) 
     """ 
     return self._xaxis_text2_transform, 'top', 'center' 

    def get_yaxis_transform(self,which='grid'): 
     """ 
     Override this method to provide a transformation for the 
     y-axis grid and ticks. 
     """ 
     assert which in ['tick1','tick2','grid'] 
     return self._yaxis_transform 

    def get_yaxis_text1_transform(self, pixelPad): 
     """ 
     Override this method to provide a transformation for the 
     y-axis tick labels. 

     Returns a tuple of the form (transform, valign, halign) 
     """ 
     return self._yaxis_text1_transform, 'center', 'right' 

    def get_yaxis_text2_transform(self, pixelPad): 
     """ 
     Override this method to provide a transformation for the 
     secondary y-axis tick labels. 

     Returns a tuple of the form (transform, valign, halign) 
     """ 
     return self._yaxis_text2_transform, 'center', 'left' 

    def _gen_axes_patch(self): 
     """ 
     Override this method to define the shape that is used for the 
     background of the plot. It should be a subclass of Patch. 

     In this case, it is a Circle (that may be warped by the axes 
     transform into an ellipse). Any data and gridlines will be 
     clipped to this shape. 
     """ 
     return Circle((0.5, 0.5), 0.5) 

    def _gen_axes_spines(self): 
     return {'lmbrt_equ_area_equ_aspect':mspines.Spine.circular_spine(self, 
                 (0.5, 0.5), 0.5)} 

    # Prevent the user from applying scales to one or both of the 
    # axes. In this particular case, scaling the axes wouldn't make 
    # sense, so we don't allow it. 
    def set_xscale(self, *args, **kwargs): 
     if args[0] != 'linear': 
      raise NotImplementedError 
     Axes.set_xscale(self, *args, **kwargs) 

    def set_yscale(self, *args, **kwargs): 
     if args[0] != 'linear': 
      raise NotImplementedError 
     Axes.set_yscale(self, *args, **kwargs) 

    # Prevent the user from changing the axes limits. In our case, we 
    # want to display the whole sphere all the time, so we override 
    # set_xlim and set_ylim to ignore any input. This also applies to 
    # interactive panning and zooming in the GUI interfaces. 
    def set_xlim(self, *args, **kwargs): 
     Axes.set_xlim(self, -pi, pi) 
     Axes.set_ylim(self, -pi, pi) 
    set_ylim = set_xlim 

    def format_coord(self, lon, lat): 
     """ 
     Override this method to change how the values are displayed in 
     the status bar. 

     In this case, we want them to be displayed in degrees N/S/E/W. 
     """ 
     lon = np.degrees(lon) 
     lat = np.degrees(lat) 

     #if lat >= 0.0: 
     # ns = 'N' 
     #else: 
     # ns = 'S' 
     #if lon >= 0.0: 
     # ew = 'E' 
     #else: 
     # ew = 'W' 
     return "{0}/{1}".format(round(lon,1), round(lat,1)) 

    class DegreeFormatter(Formatter): 
     """ 
     This is a custom formatter that converts the native unit of 
     radians into (truncated) degrees and adds a degree symbol. 
     """ 
     def __init__(self, round_to=1.0): 
      self._round_to = round_to 

     def __call__(self, x, pos=None): 
      degrees = (x/pi) * 180.0 
      degrees = round(degrees/self._round_to) * self._round_to 
      return "%d\u00b0" % degrees 

    def set_longitude_grid(self, degrees): 
     """ 
     Set the number of degrees between each longitude grid. 

     This is an example method that is specific to this projection 
     class -- it provides a more convenient interface to set the 
     ticking than set_xticks would. 
     """ 
     # Set up a FixedLocator at each of the points, evenly spaced 
     # by degrees. 
     number = (360.0/degrees) + 1 
     self.xaxis.set_major_locator(
      plt.FixedLocator(
       np.linspace(-pi, pi, number, True)[1:-1])) 
     # Set the formatter to display the tick labels in degrees, 
     # rather than radians. 
     self.xaxis.set_major_formatter(self.DegreeFormatter(degrees)) 

    def set_latitude_grid(self, degrees): 
     """ 
     Set the number of degrees between each longitude grid. 

     This is an example method that is specific to this projection 
     class -- it provides a more convenient interface than 
     set_yticks would. 
     """ 
     # Set up a FixedLocator at each of the points, evenly spaced 
     # by degrees. 
     number = (180.0/degrees) + 1 
     self.yaxis.set_major_locator(
      FixedLocator(
       np.linspace(-pi/2.0, pi/2.0, number, True)[1:-1])) 
     # Set the formatter to display the tick labels in degrees, 
     # rather than radians. 
     self.yaxis.set_major_formatter(self.DegreeFormatter(degrees)) 

    def set_longitude_grid_ends(self, degrees): 
     """ 
     Set the latitude(s) at which to stop drawing the longitude grids. 

     Often, in geographic projections, you wouldn't want to draw 
     longitude gridlines near the poles. This allows the user to 
     specify the degree at which to stop drawing longitude grids. 

     This is an example method that is specific to this projection 
     class -- it provides an interface to something that has no 
     analogy in the base Axes class. 
     """ 
     longitude_cap = degrees * (pi/180.0) 
     # Change the xaxis gridlines transform so that it draws from 
     # -degrees to degrees, rather than -pi to pi. 
     self._xaxis_pretransform \ 
      .clear() \ 
      .scale(1.0, longitude_cap * 2.0) \ 
      .translate(0.0, -longitude_cap) 

    def get_data_ratio(self): 
     """ 
     Return the aspect ratio of the data itself. 

     This method should be overridden by any Axes that have a 
     fixed data ratio. 
     """ 
     return 1.0 

    # Interactive panning and zooming is not supported with this projection, 
    # so we override all of the following methods to disable it. 
    def can_zoom(self): 
     """ 
     Return True if this axes support the zoom box 
     """ 
     return False 
    def start_pan(self, x, y, button): 
     pass 
    def end_pan(self): 
     pass 
    def drag_pan(self, button, key, x, y): 
     pass 

    class LambertEqualAreaTransform(Transform): 
     """ 
     The basic transformation class. 
     """ 
     input_dims = 2 
     output_dims = 2 
     is_separable = False 

     def transform_non_affine(self, ll): 
      """ 
      Override the transform_non_affine method to implement the custom 
      transform. 

      The input and output are Nx2 numpy arrays. 
      """ 
      xi = ll[:, 0:1] 
      yi = ll[:, 1:2] 

      k = 1 + np.absolute(cos(yi) * cos(xi)) 
      k = 2/k 

      if np.isposinf(k[0]) == True: 
       k[0] = 1e+15 

      if np.isneginf(k[0]) == True: 
       k[0] = -1e+15 

      if k[0] == 0: 
       k[0] = 1e-15 

      k = sqrt(k) 

      x = k * cos(yi) * sin(xi) 
      y = k * sin(yi) 

      return np.concatenate((x, y), 1) 

     # This is where things get interesting. With this projection, 
     # straight lines in data space become curves in display space. 
     # This is done by interpolating new values between the input 
     # values of the data. Since ``transform`` must not return a 
     # differently-sized array, any transform that requires 
     # changing the length of the data array must happen within 
     # ``transform_path``. 
     def transform_path_non_affine(self, path): 
      ipath = path.interpolated(path._interpolation_steps) 
      return Path(self.transform(ipath.vertices), ipath.codes) 
     transform_path_non_affine.__doc__ = \ 
       Transform.transform_path_non_affine.__doc__ 

     if matplotlib.__version__ < '1.2': 
      # Note: For compatibility with matplotlib v1.1 and older, you'll 
      # need to explicitly implement a ``transform`` method as well. 
      # Otherwise a ``NotImplementedError`` will be raised. This isn't 
      # necessary for v1.2 and newer, however. 
      transform = transform_non_affine 

      # Similarly, we need to explicitly override ``transform_path`` if 
      # compatibility with older matplotlib versions is needed. With v1.2 
      # and newer, only overriding the ``transform_path_non_affine`` 
      # method is sufficient. 
      transform_path = transform_path_non_affine 
      transform_path.__doc__ = Transform.transform_path.__doc__ 

     def inverted(self): 
      return LambertAxes.InvertedLambertEqualAreaTransform() 
     inverted.__doc__ = Transform.inverted.__doc__ 

    class InvertedLambertEqualAreaTransform(Transform): 
     #This is not working yet !!! 
     input_dims = 2 
     output_dims = 2 
     is_separable = False 

     def transform_non_affine(self, xy): 
      x = xy[:, 0:1] 
      y = xy[:, 1:2] 

      #quarter_x = 0.25 * x 
      #half_y = 0.5 * y 
      #z = sqrt(1.0 - quarter_x*quarter_x - half_y*half_y) 

      #longitude = 2 * np.arctan((z*x)/(2.0 * (2.0*z*z - 1.0))) 

      r = sqrt(2) 
      p = sqrt(x**2 * y**2) 
      c = 2 * np.arcsin(p/(2 * r)) 
      phi1 = pi/2 
      lbd0 = 0 
      #print(x,y) 
      if y[0] == 0: 
       lat = 0 
      else: 
       lat = np.arcsin(cos(c) * sin(phi1) + (y * sin(c) * cos(phi1/p))) 
      #if phi == phi1: 
      # lon = lbd0 + np.arctan(x/(-y)) 
      #elif phi == -phi1: 
      # lon = lbd0 + np.arctan(x/y) 
      #else: 
      # lon = lbd0 + np.arctan(x * sin(c)/(p * cos(phi1) * cos(c) - y * sin(phi1) * sin(c))) 
      if x[0] == 0: 
       lon = 0 
      else: 
       lon = lbd0 + np.arctan(x * sin(c)/(p * cos(phi1) * cos(c) - y * sin(phi1) * sin(c))) 
      return np.concatenate((lon, lat), 1) 
     transform_non_affine.__doc__ = Transform.transform_non_affine.__doc__ 

     # As before, we need to implement the "transform" method for 
     # compatibility with matplotlib v1.1 and older. 
     if matplotlib.__version__ < '1.2': 
      transform = transform_non_affine 

     def inverted(self): 
      # The inverse of the inverse is the original transform... ;) 
      return LambertAxes.LambertEqualAreaTransform() 
     inverted.__doc__ = Transform.inverted.__doc__ 

# Now register the projection with matplotlib so the user can select 
# it. 
register_projection(LambertAxes) 
+1

В двух словах, это выглядит, как вы подаете декартово матрицу вращения в сферических координатах. Перед применением матрицы вращения вам нужно будет преобразовать обратно в 3D-декартовы координаты. Я пишу гораздо более подробный ответ, но, надеюсь, этот комментарий немного помогает. –

+0

Это имеет смысл, но я не уверен, где математика идет не так. Слишком плохо, что пользовательские прогнозы не могут просто принимать векторы в качестве входных данных. – tobias47n9e

+0

Ну, возможно, я неправильно понял вашу матрицу вращения. Если вы работаете с вектором в «реальном» пространстве, тогда вам нужно будет преобразовать его в «геологическое пространство» (пока ничего не делать с проекцией). В основном 'lon, lat = sph2cart (-z, x, y)'. Это система координат, которая подается в проекцию стереометров. Кроме того, это может быть немного, прежде чем я успею закончить свой ответ. Надеюсь, после обеда или позже сегодня вечером. –

ответ

4

Похоже, что проблема заключается в ваших функциях vectorToGeogr и spherical2vector. На основе комментариев в тех и полюсе, что вы вращающиеся вокруг, похоже, что вы намеревались иметь следующее соотношение (?):

x : east-west (east-positive) 
y : north-south (north-positive) 
z : up-down (down-positive) 

Однако, вы смешались в математике в местах, подразумевавшее математические координаты :

x : towards the equator/prime-meridian intersection 
y : towards the equator/90 intersection 
z : towards the north pole 

Быстрое, но не испытанное испытание заключается в попытке «круглого отключения» любых функций преобразования координат. Это не гарантирует, что то, что вы делаете, является правильным, но гарантирует, что оно внутренне непротиворечиво. Ваша текущая версия вещей терпит неудачу это испытание:

for lat in range(-90, 100, 10): 
    for lon in range(-180, 190, 10): 
     point = np.radians([lon, lat]) 
     round_trip = vectorToGeogr(sphericalToVector(point)) 
     assert np.allclose(point, round_trip) 

как в сторону, я настоятельно рекомендую получать по крайней мере, несколько тестов, и работает, и с помощью тестового бегуна какой-то (py.test мой любимый). Это сэкономит вам много боли в долгосрочной перспективе!


Краткое примечание стороны:

Лично я предпочитаю, чтобы отделить «реальный мир» декартово пространство от картезианского пространства, используемого в stereonet.

Это упрощает математику, и преобразование между реальным пространством и «стереоэкономным пространством» выполняется прямолинейно (например, см. Функции mplstereonet.xyz2stereonet и mplstereonet.stereonet2xyz.Они оба находятся в файле, к которому вы привязались). В примерах, приведенных в stereonet_math.py, используется второй набор условных обозначений. Когда вам нужно иметь дело с «реальными» векторами (например, пример contour_normal_vectors.py), они могут быть преобразованы либо с xyz2stereonet (выходы lon, lat), либо с одной из различных функций normal2<foo> (выходы/опускание, удар/падение и т. Д.), ,


Однако, если вы хотите использовать «реального мира» Декартовы координаты внутри, вам необходимо изменить свои функции преобразования.

sphericalToVector Вашей оригинальная функция:

def sphericalToVector(inp_ar): 
    ar = np.array([0.0, 0.0, 0.0]) 
    ar[0] = sin(inp_ar[0]) * cos(inp_ar[1]) 
    ar[1] = cos(inp_ar[0]) * cos(inp_ar[1]) 
    ar[2] = sin(inp_ar[1]) 
    return ar 

Должен быть изменен на:

def sphericalToVector(inp_ar): 
    ar = np.array([0.0, 0.0, 0.0]) 
    ar[0] = -sin(inp_ar[1]) 
    ar[1] = sin(inp_ar[0]) * cos(inp_ar[1]) 
    ar[2] = cos(inp_ar[0]) * cos(inp_ar[1]) 
    return ar 

И исходную vectorToGeogr функции:

def vectorToGeogr(vect): 
    ar = np.array([0.0, 0.0]) 
    ar[0] = np.arctan2(vect[0], vect[2]) 
    ar[1] = np.arctan2(vect[1], vect[2]) 
    ar = ar * pi/2 
    return ar 

Должен быть изменена на:

def vectorToGeogr(vect): 
    ar = np.array([0.0, 0.0]) 
    ar[0] = np.arctan2(vect[1], vect[2]) 
    ar[1] = np.arcsin(-vect[0]/np.linalg.norm(vect)) 
    return ar 

Модифицированная версия вашего примера находится здесь: https://gist.github.com/joferkington/ddd90715421720033066 Единственное, что изменилось, - это функции выше в test.py. В качестве примера результата:

enter image description here

+0

Кроме того, как еще одно примечание стороны: есть более простой трюк для вращения вокруг произвольного полюса, который позволяет избежать всего триггера, который вы выписали в 'transformVector'. Посмотрите на https://github.com/joferkington/euler_pole, или, если хотите, я могу привести пример, заменяющий ваш текущий подход. –