Я пытался использовать tornado-redis (это в основном вилка brükva, слегка модифицированная для работы с интерфейсом tornado.gen вместо adisp), чтобы доставлять события, используя redis' pubsub.Как я могу отслеживать/исправить утечку памяти в торнадо-redis с помощью пимплера?
Итак, я записал небольшой скрипт, чтобы проверить все, вдохновленное this example.
import os
from tornado import ioloop, gen
import tornadoredis
print os.getpid()
def on_message(msg):
print msg
@gen.engine
def listen():
c = tornadoredis.Client()
c.connect()
yield gen.Task(c.subscribe, 'channel')
c.listen(on_message)
listen()
ioloop.IOLoop.instance().start()
К сожалению, как я PUBLISH
ред через redis-cli
использование памяти продолжали расти.
Чтобы использовать профилирование памяти, я сначала попытался использовать guppy-pe, но это не сработало бы под python 2.7 (да даже пробовал багажник), поэтому я упал до pympler.
import os
from pympler import tracker
from tornado import ioloop, gen
import tornadoredis
print os.getpid()
class MessageHandler(object):
def __init__(self):
self.memory_tracker = tracker.SummaryTracker()
def on_message(self, msg):
self.memory_tracker.print_diff()
@gen.engine
def listen():
c = tornadoredis.Client()
c.connect()
yield gen.Task(c.subscribe, 'channel')
c.listen(MessageHandler().on_message)
listen()
ioloop.IOLoop.instance().start()
Теперь каждый раз, когда я PUBLISH
ред я мог видеть, что некоторые объекты не были освобождены:
types | # objects | total size
===================================================== | =========== | ============
dict | 32 | 14.75 KB
tuple | 41 | 3.66 KB
set | 8 | 1.81 KB
instancemethod | 16 | 1.25 KB
cell | 22 | 1.20 KB
function (handle_exception) | 8 | 960 B
function (inner) | 7 | 840 B
generator | 8 | 640 B
<class 'tornado.gen.Task | 8 | 512 B
<class 'tornado.gen.Runner | 8 | 512 B
<class 'tornado.stack_context.ExceptionStackContext | 8 | 512 B
list | 3 | 504 B
str | 7 | 353 B
int | 7 | 168 B
builtin_function_or_method | 2 | 144 B
types | # objects | total size
===================================================== | =========== | ============
dict | 32 | 14.75 KB
tuple | 42 | 4.23 KB
set | 8 | 1.81 KB
cell | 24 | 1.31 KB
instancemethod | 16 | 1.25 KB
function (handle_exception) | 8 | 960 B
function (inner) | 8 | 960 B
generator | 8 | 640 B
<class 'tornado.gen.Task | 8 | 512 B
<class 'tornado.gen.Runner | 8 | 512 B
<class 'tornado.stack_context.ExceptionStackContext | 8 | 512 B
object | 8 | 128 B
str | 2 | 116 B
int | 1 | 24 B
types | # objects | total size
===================================================== | =========== | ============
dict | 32 | 14.75 KB
tuple | 42 | 4.73 KB
set | 8 | 1.81 KB
cell | 24 | 1.31 KB
instancemethod | 16 | 1.25 KB
function (handle_exception) | 8 | 960 B
function (inner) | 8 | 960 B
generator | 8 | 640 B
<class 'tornado.gen.Task | 8 | 512 B
<class 'tornado.gen.Runner | 8 | 512 B
<class 'tornado.stack_context.ExceptionStackContext | 8 | 512 B
list | 0 | 240 B
object | 8 | 128 B
int | -1 | -24 B
str | 0 | -34 B
Теперь, когда я знаю, что есть на самом деле утечка памяти, как отслеживать, где создаются эти объекты? Думаю, я должен начать here?
Большое спасибо за то, что указали мне на эту проблему. Я обновился, и утечка + замедление исчезло :) –