2016-02-21 9 views
0

Я использую учебное руководство по отслеживанию нескольких объектов на основе движения и смог успешно получить это для работы с моим видео, но можно ли сохранить видео, которое я получаю как вывод? Я попытался сохранить его с кодом, как показано ниже, но он не решает мою проблему. Незлая помощь.Как сохранить результат, полученный при отслеживании нескольких объектов на основе движения?

function multiObjectTracking() 
% Create System objects used for reading video, detecting moving objects, 
% and displaying the results. 
obj = setupSystemObjects(); 

tracks = initializeTracks(); % Create an empty array of tracks. 

nextId = 1; % ID of the next track 

% Detect moving objects, and track them across video frames. 
while ~isDone(obj.reader) 
    frame = readFrame(); 
    [centroids, bboxes, mask] = detectObjects(frame); 
    predictNewLocationsOfTracks(); 
    [assignments, unassignedTracks, unassignedDetections] = ... 
     detectionToTrackAssignment(); 

    updateAssignedTracks(); 
    updateUnassignedTracks(); 
    deleteLostTracks(); 
    createNewTracks(); 

    displayTrackingResults(); 
end 
function obj = setupSystemObjects() 
     % Initialize Video I/O 
     % Create objects for reading a video from a file, drawing the tracked 
     % objects in each frame, and playing the video. 

     % Create a video file reader. 
     obj.reader = vision.VideoFileReader('./F1.mov'); 

     % Create two video players, one to display the video, 
     % and one to display the foreground mask. 
     obj.videoPlayer = vision.VideoPlayer('Position', [20, 400, 700, 400]); 
     obj.maskPlayer = vision.VideoPlayer('Position', [740, 400, 700, 400]); 

     % Create System objects for foreground detection and blob analysis 

     % The foreground detector is used to segment moving objects from 
     % the background. It outputs a binary mask, where the pixel value 
     % of 1 corresponds to the foreground and the value of 0 corresponds 
     % to the background. 

     obj.detector = vision.ForegroundDetector('NumGaussians', 3, ... 
      'NumTrainingFrames', 40, 'MinimumBackgroundRatio', 0.7); 

     % Connected groups of foreground pixels are likely to correspond to moving 
     % objects. The blob analysis System object is used to find such groups 
     % (called 'blobs' or 'connected components'), and compute their 
     % characteristics, such as area, centroid, and the bounding box. 

     obj.blobAnalyser = vision.BlobAnalysis('BoundingBoxOutputPort', true, ... 
      'AreaOutputPort', true, 'CentroidOutputPort', true, ... 
      'MinimumBlobArea', 400); 
end 
    function tracks = initializeTracks() 
     % create an empty array of tracks 
     tracks = struct(... 
      'id', {}, ... 
      'bbox', {}, ... 
      'kalmanFilter', {}, ... 
      'age', {}, ... 
      'totalVisibleCount', {}, ... 
      'consecutiveInvisibleCount', {}); 
    end 
function frame = readFrame() 
     frame = obj.reader.step(); 
end 
    function [centroids, bboxes, mask] = detectObjects(frame) 

     % Detect foreground. 
     mask = obj.detector.step(frame); 

     % Apply morphological operations to remove noise and fill in holes. 
     mask = imopen(mask, strel('rectangle', [3,3])); 
     mask = imclose(mask, strel('rectangle', [15, 15])); 
     mask = imfill(mask, 'holes'); 

     % Perform blob analysis to find connected components. 
     [~, centroids, bboxes] = obj.blobAnalyser.step(mask); 
    end 
function predictNewLocationsOfTracks() 
     for i = 1:length(tracks) 
      bbox = tracks(i).bbox; 

      % Predict the current location of the track. 
      predictedCentroid = predict(tracks(i).kalmanFilter); 

      % Shift the bounding box so that its center is at 
      % the predicted location. 
      predictedCentroid = int32(predictedCentroid) - bbox(3:4)/2; 
      tracks(i).bbox = [predictedCentroid, bbox(3:4)]; 
     end 
end 
function [assignments, unassignedTracks, unassignedDetections] = ... 
      detectionToTrackAssignment() 

     nTracks = length(tracks); 
     nDetections = size(centroids, 1); 

     % Compute the cost of assigning each detection to each track. 
     cost = zeros(nTracks, nDetections); 
     for i = 1:nTracks 
      cost(i, :) = distance(tracks(i).kalmanFilter, centroids); 
     end 

     % Solve the assignment problem. 
     costOfNonAssignment = 20; 
     [assignments, unassignedTracks, unassignedDetections] = ... 
      assignDetectionsToTracks(cost, costOfNonAssignment); 
end 
function updateAssignedTracks() 
     numAssignedTracks = size(assignments, 1); 
     for i = 1:numAssignedTracks 
      trackIdx = assignments(i, 1); 
      detectionIdx = assignments(i, 2); 
      centroid = centroids(detectionIdx, :); 
      bbox = bboxes(detectionIdx, :); 

      % Correct the estimate of the object's location 
      % using the new detection. 
      correct(tracks(trackIdx).kalmanFilter, centroid); 

      % Replace predicted bounding box with detected 
      % bounding box. 
      tracks(trackIdx).bbox = bbox; 

      % Update track's age. 
      tracks(trackIdx).age = tracks(trackIdx).age + 1; 

      % Update visibility. 
      tracks(trackIdx).totalVisibleCount = ... 
       tracks(trackIdx).totalVisibleCount + 1; 
      tracks(trackIdx).consecutiveInvisibleCount = 0; 
     end 
end 
    function updateUnassignedTracks() 
     for i = 1:length(unassignedTracks) 
      ind = unassignedTracks(i); 
      tracks(ind).age = tracks(ind).age + 1; 
      tracks(ind).consecutiveInvisibleCount = ... 
       tracks(ind).consecutiveInvisibleCount + 1; 
     end 
    end 
function deleteLostTracks() 
     if isempty(tracks) 
      return; 
     end 

     invisibleForTooLong = 20; 
     ageThreshold = 8; 

     % Compute the fraction of the track's age for which it was visible. 
     ages = [tracks(:).age]; 
     totalVisibleCounts = [tracks(:).totalVisibleCount]; 
     visibility = totalVisibleCounts ./ ages; 

     % Find the indices of 'lost' tracks. 
     lostInds = (ages < ageThreshold & visibility < 0.6) | ... 
      [tracks(:).consecutiveInvisibleCount] >= invisibleForTooLong; 

     % Delete lost tracks. 
     tracks = tracks(~lostInds); 
end 
function createNewTracks() 
     centroids = centroids(unassignedDetections, :); 
     bboxes = bboxes(unassignedDetections, :); 

     for i = 1:size(centroids, 1) 

      centroid = centroids(i,:); 
      bbox = bboxes(i, :); 

      % Create a Kalman filter object. 
      kalmanFilter = configureKalmanFilter('ConstantVelocity', ... 
       centroid, [200, 50], [100, 25], 100); 

      % Create a new track. 
      newTrack = struct(... 
       'id', nextId, ... 
       'bbox', bbox, ... 
       'kalmanFilter', kalmanFilter, ... 
       'age', 1, ... 
       'totalVisibleCount', 1, ... 
       'consecutiveInvisibleCount', 0); 

      % Add it to the array of tracks. 
      tracks(end + 1) = newTrack; 

      % Increment the next id. 
      nextId = nextId + 1; 
     end 
end 

function displayTrackingResults() 
     % Convert the frame and the mask to uint8 RGB. 
     frame = im2uint8(frame); 
     mask = uint8(repmat(mask, [1, 1, 3])) .* 255; 

     minVisibleCount = 8; 
     if ~isempty(tracks) 

      % Noisy detections tend to result in short-lived tracks. 
      % Only display tracks that have been visible for more than 
      % a minimum number of frames. 
      reliableTrackInds = ... 
       [tracks(:).totalVisibleCount] > minVisibleCount; 
      reliableTracks = tracks(reliableTrackInds); 

      % Display the objects. If an object has not been detected 
      % in this frame, display its predicted bounding box. 
      if ~isempty(reliableTracks) 
       % Get bounding boxes. 
       bboxes = cat(1, reliableTracks.bbox); 

       % Get ids. 
       ids = int32([reliableTracks(:).id]); 

       % Create labels for objects indicating the ones for 
       % which we display the predicted rather than the actual 
       % location. 
       labels = cellstr(int2str(ids')); 
       predictedTrackInds = ... 
        [reliableTracks(:).consecutiveInvisibleCount] > 0; 
       isPredicted = cell(size(labels)); 
       isPredicted(predictedTrackInds) = {' predicted'}; 
       labels = strcat(labels, isPredicted); 

       % Draw the objects on the frame. 
       frame = insertObjectAnnotation(frame, 'rectangle', ... 
        bboxes, labels); 

       % Draw the objects on the mask. 
       mask = insertObjectAnnotation(mask, 'rectangle', ... 
        bboxes, labels); 
      end 
     end 

     myVideo = VideoWriter('myfile.avi'); 
     myVideo.FrameRate = 15; % Default 30 
     myVideo.Quality = 75; % Default 75 
     open(myVideo); 

     for i = 1:length(tracks) 

      writeVideo(myVideo, mask); 
      obj.maskPlayer.step(mask); 
      % obj.videoPlayer.step(frame); 
      % pause(1); 

     end 
     close(myVideo); 

     % Display the mask and the frame. 
     obj.maskPlayer.step(mask); 
     obj.videoPlayer.step(frame); 
     pause(1); 
     %saveas(fm1,'g.jpg') 
end 
end 
+0

В этом вопросе слишком много кода. Вам нужно сузить его до кода, который вызывает вашу проблему, и что такое точная проблема - ошибка? код сохраняет файл, но он не содержит того, что вы ожидаете? Файл не сохраняется? – nkjt

ответ

1

Здесь действительно слишком много кода. Вам не нужно вставлять всю программу.

Одна из проблем, которые я вижу, состоит в том, что у вас есть цикл над количеством дорожек, и вы записываете кадр в видеофайл для каждого трека, что неверно. Вы должны записывать кадр в видеофайл только один раз на каждую итерацию основного цикла.

Если вы хотите создать видео с ограничивающими прямоугольниками вокруг отслеживаемых объектов, вы должны записать каждый кадр с аннотациями к видеофайлу сразу после вызова insertObjectAnnotation.

+0

Спасибо за это предложение. Я попытался с введением аннотации после вызова insertObjectAnnotation, но в этом случае он может создать файл «myfile.avi», но он ничего не хранит в нем. –