Я хочу создать набор данных, который имеет тот же формат, что и набор данных cifar-10 для использования с Tensorflow. У него должны быть изображения и метки. В принципе, я хотел бы получить код cifar-10, но разные изображения и метки, и запустить этот код. Я не нашел никакой информации о том, как сделать это в Интернете, и совершенно не знаком с машинным обучением.создать набор данных, который имеет тот же формат, что и набор данных cifar-10
ответ
CIFAR-10 является подмножеством гораздо большего размера dataset. Изображения, которые вам нужны, - это масштабированные цветные изображения с высотой и шириной 32 пикселя с тремя цветовыми каналами. Один из подходов к вашей цели - начать с выбора 10 разных меток из набора данных CIFAR-100, сохраняя и запуская существующий код. Например, вы можете выбрать транспортные средства 1 и транспортные средства 2 суперкласса. Это даст вам 6000 маркированных изображений, охватывающих: велосипед, автобус, мотоцикл, пикап, поезд, газонокосилка, ракеты, трамвайные, танковые и тракторные классы. Тогда вы могли бы построить предиктор типа транспортного средства - довольно классный способ познакомиться с машинным обучением. : -)
Внутри файла cifar10.py вы можете увидеть каталоги, которые используются для учебного файла, загруженного с 'http://www.cs.toronto.edu/~kriz/cifar-10-binary.tar.gz'. Без изменения кода вы можете просто обновить эти завышенные учебные файлы своими данными. Загляните в каталог/tmp/cifar10_data/cifar-10-bat-bin. Например. Файл batches.meta.txt содержит метки, как описано в разделе «Двоичная версия» здесь: https://www.cs.toronto.edu/~kriz/cifar.html
Я должен был сделать это также и создал множество функций для форматирования изображений и текстового файла в читаемом формате для тензорного потока. Вот изменения, которые я сделал, чтобы использовать группу изображений в папке с изображениями (я использовал glob для итерации через них) и текстовый файл с информацией об изображениях, закодированных (у меня была серия номеров для каждого изображения, номера, описанные там, где пользователь направлял робота в то время, когда принималось каждое изображение). Я создал функцию генерации мини-абзацев и создания набора учебных и тестовых данных. Я также преобразовал числа, которые я связывал с каждым изображением, в однострочные векторы, чтобы они вписывались (вы можете использовать это, если хотите, но могут быть не полезны).
#!/usr/bin/python
import cv2
import numpy as np
import tensorflow as tf
import glob
import re
import random
# Parameters
learning_rate = 0.001
training_iters = 20000
batch_size = 120
display_step = 10
# Network Parameters
n_input = 784 # MNIST data input (img shape: 28*28)
n_classes = 1 # MNIST total classes (0-9 digits)
dropout = 0.75 # Dropout, probability to keep units
image = np.reshape(np.asarray(mnist.train.images[0]), (28,28))
#Process Images
cv_img = []
for img in glob.glob("./images/*.jpeg"):
n = cv2.cvtColor(cv2.resize(cv2.imread(img), (28,28)), cv2.COLOR_BGR2GRAY)
n = np.asarray(n)
n = np.reshape(n, n_input)
cv_img.append(n)
#Process File for angle, here we read the text line by line and make a list
with open("./images/allinfo.txt") as f:
content = f.readlines()
#Initialize arrays to unpack data file
angle = []
image_number = []
#Iterate through the text list and split each one by the comma separating the values.
#Turn the text into floats for use in the network
for i in range(len(content)):
content[i] = content[i][:-1].split(',')
image_number.append(float(content[i][1]))
angle.append(float(content[i][7]))
#Divide both angle and image number into test and train data sets
angle = np.atleast_2d(angle).T
##Encode angle into 10 classes (it ranges -1 to 1)
for i in range(len(angle)):
angle[i] = random.uniform(-1,1)
angle[i] = int((angle[i]+1.0)*n_classes/2.)
#Create a one-hot version of angle
angle_one_hot = np.zeros((len(angle),n_classes))
for c in range(len(angle)):
one_hot = np.zeros(n_classes)
one_hot[int(angle[c])] = 1
angle_one_hot[c] = one_hot
image_number = np.atleast_2d(image_number).T
test_data = np.hstack((image_number, angle))
#print test_data
train_percent = .8
train_number = int(len(test_data)*train_percent)
train_data = np.zeros((train_number, 2))
for i in range(train_number):
rand = random.randrange(0,len(test_data))
train_data[i] = test_data[rand]
test_data = np.delete(test_data, rand, 0)
test_data_images = test_data[:,0]
test_data_angles = test_data[:,1]
train_data_images, train_data_angles = train_data[:,0], train_data[:,1]
def gen_batch(angles, images, batch_size, image_array=cv_img):
indices = random.sample(xrange(0,len(images)), batch_size)
batch_images = []
batch_angles = []
# print angles
for i in range(batch_size):
batch_images.append(image_array[int(images[indices[i]])][:])
batch_angles.append(angles[indices[i]])
batch_images = np.asarray(batch_images)
batch_angles = np.asarray(batch_angles)
return batch_images, batch_angles
# tf Graph input
x = tf.placeholder(tf.float32, [None, n_input])
y = tf.placeholder(tf.float32)
keep_prob = tf.placeholder(tf.float32) #dropout (keep probability)
# Create some wrappers for simplicity
def conv2d(x, W, b, strides=1):
# Conv2D wrapper, with bias and relu activation
x = tf.nn.conv2d(x, W, strides=[1, strides, strides, 1], padding='SAME')
x = tf.nn.bias_add(x, b)
return tf.nn.relu(x)
def maxpool2d(x, k=2):
# MaxPool2D wrapper
return tf.nn.max_pool(x, ksize=[1, k, k, 1], strides=[1, k, k, 1],
padding='SAME')
# Create model
def conv_net(x, weights, biases, dropout):
# Reshape input picture
x = tf.reshape(x, shape=[-1, 28, 28, 1])
# Convolution Layer
conv1 = conv2d(x, weights['wc1'], biases['bc1'])
# Max Pooling (down-sampling)
conv1 = maxpool2d(conv1, k=2)
# Convolution Layer
conv2 = conv2d(conv1, weights['wc2'], biases['bc2'])
# Max Pooling (down-sampling)
conv2 = maxpool2d(conv2, k=2)
# Fully connected layer
# Reshape conv2 output to fit fully connected layer input
fc1 = tf.reshape(conv2, [-1, weights['wd1'].get_shape().as_list()[0]])
fc1 = tf.add(tf.matmul(fc1, weights['wd1']), biases['bd1'])
fc1 = tf.nn.relu(fc1)
# Apply Dropout
fc1 = tf.nn.dropout(fc1, dropout)
# Output, class prediction
out = tf.add(tf.matmul(fc1, weights['out']), biases['out'])
return out
# Store layers weight & bias
weights = {
# 5x5 conv, 1 input, 32 outputs
'wc1': tf.Variable(tf.random_normal([5, 5, 1, 32])),
# 5x5 conv, 32 inputs, 64 outputs
'wc2': tf.Variable(tf.random_normal([5, 5, 32, 64])),
# fully connected, 7*7*64 inputs, 1024 outputs
'wd1': tf.Variable(tf.random_normal([7*7*64, 1024])),
# 1024 inputs, 10 outputs (class prediction)
'out': tf.Variable(tf.random_normal([1024, n_classes]))
}
biases = {
'bc1': tf.Variable(tf.random_normal([32])),
'bc2': tf.Variable(tf.random_normal([64])),
'bd1': tf.Variable(tf.random_normal([1024])),
'out': tf.Variable(tf.random_normal([n_classes]))
}
# Construct model
pred = conv_net(x, weights, biases, keep_prob)
# Define loss and optimizer
#cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y))
cost = tf.reduce_mean(pred)
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize((pred-y)**2)
# Evaluate model
correct_pred = y
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
# Initializing the variables
init = tf.initialize_all_variables()
# Launch the graph
with tf.Session() as sess:
sess.run(init)
step = 1
print(y)
# Keep training until reach max iterations
while step * batch_size < training_iters:
batch_x, batch_y = gen_batch(train_data_angles, train_data_images, batch_size)
#cv2.imshow('trash', batch_x[0,:].reshape((28,28)))
#cv2.waitKey(0)
#print(batch_y)
# Run optimization op (backprop)
sess.run(optimizer, feed_dict={x: batch_x, y: batch_y,
keep_prob: dropout})
if step % display_step == 0:
# Calculate batch loss and accuracy
loss, acc = sess.run([cost, accuracy], feed_dict={x: batch_x,
y: batch_y,
keep_prob: 1.})
print "Iter " + str(step*batch_size) + ", Minibatch Loss= " + \
"{:.6f}".format(loss) + ", Training Accuracy= " + \
"{:.5f}".format(acc)
step += 1
print "Optimization Finished!"
# Calculate accuracy for all test images
img, lbls = gen_batch(test_data_angles, test_data_images, len(test_data_angles))
print "Testing Accuracy:", \
sess.run(accuracy, feed_dict={x: img,
y: lbls,
keep_prob: 1.})
Это не работает как хорошие яя (данные не нормализуются, скорость обучения является две высокими и точность обучения еще не запрограммирована), но код для обработки изображений работает.
Надеюсь, это поможет!
Вы в основном описали, что вам нужно: вам нужно найти новый набор изображений с метками. Вы можете: a) искать существующий набор изображений и ярлыков или b) загружать собственные изображения и наклеивать их на себя. Существующие 60 000 изображений (50 000 поездов/10 000 тестов) не подходят для вашего случая использования? Это довольно большой набор данных, чтобы начать выполнять компьютерное зрение. – blacksite
Дайте нам дополнительную информацию о наборе данных cifar-10, чтобы мы могли помочь вам создать такую же структуру. люди, которых они не знают, как построить набор данных cifar-10, не успеют заглянуть в него, чтобы помочь u. – Feras