Я пытаюсь получить распределение заднего использования MCMCpack
разницы между двумя показателями конверсии, сродни A и B вместе участок this PyMC tutorial.Как получить заднюю часть разницы с помощью MCMCpack?
я могу получить апостериорные два выбранных скоростей просто отлично, но я изо всех сил пытаюсь реализовать пробоотборную дельта. Любые идеи?
Edit Истинная дельта (что было бы неизвестно, если бы мы не сфабриковал данные и то, что мы хотим, чтобы оценить с помощью MCMC) разница между этими двумя показателями true_p_a
и true_p_b
т.е. 0,01.
# define true success rates
true_p_a = 0.05
true_p_b = 0.04
# set sample sizes
n_samples_a = 1000
n_samples_b = 1000
# fabricate some data
set.seed(10);
obs_a = rbinom(n=n_samples_a, size=1, prob=true_p_a)
set.seed(1);
obs_b = rbinom(n=n_samples_b, size=1, prob=true_p_b)
# what are the observed conversion rates?
mean(obs_a) #0.056
mean(obs_b) #0.042
# convert to number of successes
successes_a = sum(obs_a) #56
successes_b = sum(obs_b) #42
# calculate the posterior
require(MCMCpack)
simulations = 20000
posterior_a = MCbinomialbeta(successes_a ,n_samples_a, alpha=1, beta=1,mc=simulations)
posterior_b = MCbinomialbeta(successes_b ,n_samples_b, alpha=1, beta=1,mc=simulations)
posterior_delta = ????
posterior_density_a = density(posterior_a)
posterior_density_b = density(posterior_b)
# plot the posteriors
require(ggplot2)
ggplot() +
geom_area(aes(posterior_density_a$x, posterior_density_a$y), fill="#7ad2f6", alpha=.5) +
geom_vline(aes(xintercept=.05), color="#7ad2f6", linetype="dotted", size=2) +
geom_area(aes(posterior_density_b$x, posterior_density_b$y), fill="#014d64", alpha=.5) +
geom_vline(aes(xintercept=.04), color="#014d64", linetype="dotted", size=2) +
scale_x_continuous(labels=percent_format(), breaks=seq(0,0.1, 0.01))