Я пытаюсь запустить некоторые испытания, чтобы сравнить cusparse и производительность cublas под дифферент разреженности (с Titan X), здесь является основным кодовым названием «testcusparsevector.cpp»:cublas необычно медленно по сравнению с cusparse
#include <stdio.h>
#include <iostream>
#include <vector>
#include <cstdlib>
#include <fstream>
#include <time.h>
#include <cuda_runtime.h>
#include <cublas.h>
#include <cusparse_v2.h>
#include <cublas_v2.h>
#include <assert.h>
#define M 6
#define N 5
#define IDX2C(i,j,ld) (((j)*(ld))+(i))
// /home/gpu1/Install/OpenBLAS-0.2.14
#define CHECK_EQ(a,b) do { \
if ((a) != (b)) { \
cout <<__FILE__<<" : "<< __LINE__<<" : check failed because "<<a<<"!="<<b<<endl;\
exit(1);\
}\
} while(0)
#define CUBLAS_CHECK(condition) \
do {\
cublasStatus_t status = condition; \
CHECK_EQ(status, CUBLAS_STATUS_SUCCESS); \
} while(0)
#define CUSPARSE_CHECK(condition)\
do {\
cusparseStatus_t status = condition; \
switch(status)\
{\
case CUSPARSE_STATUS_NOT_INITIALIZED:\
cout << "CUSPARSE_STATUS_NOT_INITIALIZED" << endl;\
break;\
case CUSPARSE_STATUS_ALLOC_FAILED:\
cout << "CUSPARSE_STATUS_ALLOC_FAILED" << endl;\
break;\
case CUSPARSE_STATUS_INVALID_VALUE:\
cout << "CUSPARSE_STATUS_INVALID_VALUE" << endl;\
break;\
case CUSPARSE_STATUS_ARCH_MISMATCH:\
cout << "CUSPARSE_STATUS_ARCH_MISMATCH" << endl;\
break;\
case CUSPARSE_STATUS_MAPPING_ERROR:\
cout << "CUSPARSE_STATUS_MAPPING_ERROR" << endl;\
break;\
case CUSPARSE_STATUS_EXECUTION_FAILED:\
cout << "CUSPARSE_STATUS_EXECUTION_FAILED" << endl;\
break;\
case CUSPARSE_STATUS_INTERNAL_ERROR:\
cout << "CUSPARSE_STATUS_INTERNAL_ERROR" << endl;\
break;\
case CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED:\
cout << "CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED" << endl;\
break;\
case CUSPARSE_STATUS_ZERO_PIVOT:\
cout << "CUSPARSE_STATUS_ZERO_PIVOT" << endl;\
}\
CHECK_EQ(status, CUSPARSE_STATUS_SUCCESS); \
} while(0)
#define CUDA_CHECK(condition)\
do {\
cudaError_t error = condition;\
CHECK_EQ(error, cudaSuccess);\
} while(0)
//check after kernel function
#define CUDA_POST_KERNEL_CHECK CUDA_CHECK(cudaPeekAtLastError())
#define __TIMING__ 1
#if __TIMING__
#define INIT_TIMER cudaEvent_t start, stop; \
float milliseconds = 0; \
float sum = 0;\
cudaEventCreate(&start);\
cudaEventCreate(&stop);
#define TIC { cudaEventRecord(start); }
#if __CUDNN__
#define PREDEFNAME "CUDNN"
#else
#define PREDEFNAME "CUDA"
#endif
#define TOC(a) { cudaEventRecord(stop); \
cudaEventSynchronize(stop); \
cudaEventElapsedTime(&milliseconds, start, stop); \
printf("GPU Execution time of %s_%s: %f ms\n",PREDEFNAME, a, milliseconds); \
sum += milliseconds;\
fflush(stdout); }
#define CLOSE_TIMER {cudaEventDestroy(start); cudaEventDestroy(stop); }
#endif
using namespace std;
void dispArray(double* array, size_t width, size_t height) {
for (int i=0; i < height;i++) {
for (int j=0;j < width;j++) {
cout << array[j*height+i] << ' ';
}
cout << endl;
}
cout << endl;
}
int main()
{
srand(time(NULL));
const int num_loop = 1;
const int inside_loop = 1000;
// const int WIDTH = 512*3*3;
// const int HEIGHT = 512;
// const int WIDTHOUT = 36;
const int WIDTH = 4608;
const int HEIGHT = 512;
const int WIDTHOUT = 144;
// const int WIDTH = 18500;
// const int HEIGHT = 512;
// const int WIDTHOUT = 1;
// const int WIDTH = 3;
// const int HEIGHT = 5;
// const int WIDTHOUT = 2;
INIT_TIMER
ofstream myfile;
myfile.open("test_sparsity.log");
cudaError_t cudaStat;
cusparseStatus_t stat;
cusparseHandle_t handle;
cublasHandle_t handleblas;
double *devPtrOutput;
double *devPtrOutput2;
double *devPtrRand;
double *devPtrSec;
CUDA_CHECK(cudaMalloc((void **)&(devPtrOutput), sizeof(double)*HEIGHT*WIDTHOUT));
CUDA_CHECK(cudaMalloc((void **)&(devPtrOutput2), sizeof(double)*HEIGHT*WIDTHOUT));
CUDA_CHECK(cudaMalloc((void **)&(devPtrRand), sizeof(double)*WIDTH*WIDTHOUT));
CUDA_CHECK(cudaMalloc((void **)&(devPtrSec), sizeof(double)*WIDTH*HEIGHT));
const double alpha=1.0;
const double beta=0.0;
double *csrVal;
int *csrRowPtr;
int *csrColInd;
const bool SPARSE = true;
long a = clock();
long temp = clock();
cusparseMatDescr_t descr;
CUSPARSE_CHECK(cusparseCreateMatDescr(&descr));
cusparseSetMatType(descr, CUSPARSE_MATRIX_TYPE_GENERAL);
cusparseSetMatIndexBase(descr, CUSPARSE_INDEX_BASE_ZERO);
int nnz;
CUSPARSE_CHECK(cusparseCreate(&handle));
CUBLAS_CHECK(cublasCreate(&handleblas));
int *nnzPerRow_gpu;
CUDA_CHECK(cudaMalloc((void **)&(nnzPerRow_gpu), sizeof(int)*HEIGHT));
CUDA_CHECK(cudaMalloc((void **)&(csrRowPtr), sizeof(int)*(HEIGHT+1)));
double density_array[1] = {0.9999};//, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1 ,0.09, 0.08, 0.07, 0.06, 0.05 ,0.04, 0.03, 0.02, 0.01};
for (int inddense=0;inddense < 1;inddense++) {
double DENSITY = density_array[inddense];
int num_non_zeros = DENSITY * (WIDTH * HEIGHT);
CUDA_CHECK(cudaMalloc((void **)&(csrColInd), sizeof(int)*num_non_zeros));
CUDA_CHECK(cudaMalloc((void **)&(csrVal), sizeof(double)*num_non_zeros));
INIT_TIMER
for (int iter=0; iter < num_loop;iter++) {
vector<double> randVec(WIDTH*WIDTHOUT, 0);
vector<double> secArray(WIDTH*HEIGHT, 0);
vector<int> temp(WIDTH*HEIGHT, 1);
for (int j = 0; j < WIDTH*WIDTHOUT; j++) {
randVec[j]=(double)(rand()%100000)/100;
}
for (int x, i = 0; i < num_non_zeros;i++) {
do
{
x = rand() % (WIDTH*HEIGHT);
} while(temp[x] == 0);
temp[x]=0;
secArray[x]=(double)(rand()%100000)/100;
}
int count = 0;
for(int i=0;i < WIDTH*HEIGHT;i++) {
if (secArray[i] != 0) {
count++;
}
}
// randVec = {2,2,2,3,3,3};
// secArray = {0,5,0,2,5,8,7,0,0,0,0,2,0,4,4};
CUDA_CHECK(cudaMemcpy(devPtrRand, &randVec[0], sizeof(double)*WIDTH*WIDTHOUT, cudaMemcpyHostToDevice));
CUDA_CHECK(cudaMemcpy(devPtrSec, &secArray[0], sizeof(double)*WIDTH*HEIGHT, cudaMemcpyHostToDevice));
if (SPARSE) {
CUSPARSE_CHECK(cusparseDnnz(handle, CUSPARSE_DIRECTION_ROW, HEIGHT, WIDTH, descr, devPtrSec, HEIGHT, nnzPerRow_gpu, &nnz));
CUSPARSE_CHECK(cusparseDdense2csr(handle, HEIGHT, WIDTH, descr,devPtrSec,HEIGHT,nnzPerRow_gpu,csrVal,csrRowPtr,csrColInd));
}
// vector<double> tempcsrVal(nnz,0);
// vector<int> tempcsrRowPtr(HEIGHT+1);
// vector<int> tempcsrColInd(nnz,0);
// CUDA_CHECK(cudaMemcpy(&tempcsrVal[0], csrVal, sizeof(double)*nnz, cudaMemcpyDeviceToHost));
// CUDA_CHECK(cudaMemcpy(&tempcsrRowPtr[0], csrRowPtr, sizeof(int)*(HEIGHT+1), cudaMemcpyDeviceToHost));
// CUDA_CHECK(cudaMemcpy(&tempcsrColInd[0], csrColInd, sizeof(int)*nnz, cudaMemcpyDeviceToHost));
// for (int i =0; i < nnz;i++) {
// cout << tempcsrVal[i] << " ";
// }
// cout << endl;
// for (int i =0; i < HEIGHT+1;i++) {
// cout << tempcsrRowPtr[i] << " ";
// }
// cout << endl;
// for (int i =0; i < nnz;i++) {
// cout << tempcsrColInd[i] << " ";
// }
// cout << endl;
cudaDeviceSynchronize();
TIC
for (int i=0 ; i < inside_loop;i++) {
if (WIDTHOUT == 1) {
// TIC
CUSPARSE_CHECK(cusparseDcsrmv(handle, CUSPARSE_OPERATION_NON_TRANSPOSE,
HEIGHT, WIDTH, nnz, &alpha, descr, csrVal, csrRowPtr, csrColInd,
devPtrRand, &beta, devPtrOutput));
// TOC("csrmv")
} else {
// TIC
CUSPARSE_CHECK(cusparseDcsrmm(handle, CUSPARSE_OPERATION_NON_TRANSPOSE,
HEIGHT, WIDTHOUT, WIDTH, nnz, &alpha, descr, csrVal, csrRowPtr,
csrColInd, devPtrRand, WIDTH, &beta, devPtrOutput, HEIGHT));
// TOC("csrmm")
}
}
TOC("csr")
TIC
for (int i=0 ; i < inside_loop;i++) {
if (WIDTHOUT == 1) {
// TIC
CUBLAS_CHECK(cublasDgemv(handleblas, CUBLAS_OP_N, HEIGHT, WIDTH, &alpha, devPtrSec, HEIGHT , devPtrRand, 1, &beta, devPtrOutput2, 1));
// TOC("dgemv")
} else {
// TIC
CUBLAS_CHECK(cublasDgemm(handleblas, CUBLAS_OP_N, CUBLAS_OP_N, HEIGHT, WIDTHOUT, WIDTH, &alpha, devPtrSec, HEIGHT, devPtrRand, WIDTH, &beta, devPtrOutput2, HEIGHT));
// TOC("dgemm")
}
}
TOC("blas")
#if 0
vector<double> output(HEIGHT*WIDTHOUT, 0);
vector<double> output2(HEIGHT*WIDTHOUT, 0);
CUDA_CHECK(cudaMemcpy(&output[0], devPtrOutput, sizeof(double)*HEIGHT*WIDTHOUT, cudaMemcpyDeviceToHost));
CUDA_CHECK(cudaMemcpy(&output2[0], devPtrOutput2, sizeof(double)*HEIGHT*WIDTHOUT, cudaMemcpyDeviceToHost));
dispArray(&output[0], WIDTHOUT, HEIGHT);
cout << endl;
for (int i=0;i < WIDTHOUT * HEIGHT;i++) {
if (output[i] != output2[i]) {
cout << "error: " << i << " " << (output[i] - output2[i]) << " " << output[i] << endl;
}
}
#endif
}
cout << DENSITY << " " << sum/num_loop << endl;
myfile << DENSITY << " " << sum/num_loop << endl;
cudaFree(csrColInd);
cudaFree(csrVal);
}
myfile.close();
cudaFree(csrRowPtr);
cudaFree(devPtrOutput);
cudaFree(devPtrRand);
cudaFree(devPtrSec);
}
Однако после компиляции кода с
g++ -std=c++1y -O3 -I/usr/local/cuda/include -o testcusparsevector testcusparsevector.cpp -L/usr/local/cuda/lib64 -lcudart -lcublas -lcusparse
здесь есть выход:
GPU Execution time of CUDA_csr: 4818.447266 ms
GPU Execution time of CUDA_blas: 5024.459961 ms
белый ich должно означать, что даже если моя плотность равна 0.999, cusparseDcsrmm все еще быстрее, чем cublasDgemm, я уже проверил результат, который хорош, и по сравнению с другими примерами кажется, что проблема исходит из cublas, который слишком медленный.
У вас есть идеи о том, откуда оно взялось?
EDIT: Я попытался изменить значение с плавающей точкой, а результат более, что я искал, видимо, cublas не сделали для двойного вычисления ...
Спасибо по заранее.
Код, который вы опубликовали, не компилируется. Трудно заметить ошибку в огромной куче несовместимого кода. – talonmies
О, да, я плохо сделал, я сделал быстрые изменения, чтобы сделать его более читаемым, но забыл попробовать его один раз. Вы можете скомпилировать его сейчас. – Caenorst