Я использую тензорный поток для запуска нейронной сети свертки в базе данных MNIST. Но я получаю следующую ошибку.Ошибка отсутствия заполнителя в потоке тензора для CNN
tensorflow.python.framework.errors.InvalidArgumentError: Вы должны кормить значение для тензора заполнителем 'х' с DTYPE флоат [[Node: х = Placeholderdtype = DT_FLOAT, форма = [], _device = "/ работа : локальный/реплика: 0/задача: 0/CPU: 0" ]]
х = tf.placeholder (tf.float32, [Отсутствует, 784], имя = 'х') # mnist данные изображения форма 28 * 28 = 784
Я думал, что правильно обновляю значение x с помощью feed_dict, но его высказывание я не обновляю значение placeholder x.
Кроме того, есть ли в моем коде какой-либо другой логический недостаток?
Любая помощь была бы принята с благодарностью. Благодарю.
import tensorflow as tf
import numpy
from tensorflow.examples.tutorials.mnist import input_data
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME')
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
# Parameters
learning_rate = 0.01
training_epochs = 10
batch_size = 100
display_step = 1
# tf Graph Input
#x = tf.placeholder(tf.float32, [50, 784], name='x') # mnist data image of shape 28*28=784
#y = tf.placeholder(tf.float32, [50, 10], name='y') # 0-9 digits recognition => 10 classes
# Set model weights
W = tf.Variable(tf.zeros([784, 10]), name="weights")
b = tf.Variable(tf.zeros([10]), name="bias")
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
# Initializing the variables
init = tf.initialize_all_variables()
with tf.Session() as sess:
sess.run(init)
# Training cycle
for i in range(1000):
print i
batch_xs, batch_ys = mnist.train.next_batch(50)
x_image = tf.reshape(x, [-1,28,28,1])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
y_conv=tf.nn.softmax(tf.matmul(h_fc1, W_fc2) + b_fc2)
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y * tf.log(y_conv), reduction_indices=[1]))
sess.run(
[cross_entropy, y_conv],
feed_dict={x: batch_xs, y: batch_ys})
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y,1))
print correct_prediction.eval()
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
Почему вы прокомментировали заполнители? #x = tf.placeholder (tf.float32, [50, 784], name = 'x') #y = tf.placeholder (tf.float32, [50, 10], name = 'y') В какой строке вы получили сообщение об ошибке? –