Я работаю над линейной регрессией с двумерными данными, но я не могу получить правильные веса для линии регрессии. Возможно, возникла проблема со следующим кодом, потому что рассчитанные весы для линии регрессии рассчитаны не так, как . Использование слишком больших значений данных, около 80000 для x, приводит к NaN для весов. Масштабирование данных от 0 до 1 приводит к неправильным весам, потому что линия регрессии не соответствует данным.неправильных весов с использованием пакетного градиентного спуска в matlab
function [w, epoch_batch, error_batch] = batch_gradient_descent(x, y)
% number of examples
q = size(x,1);
% learning rate
alpha = 1e-10;
w0 = rand(1);
w1 = rand(1);
curr_error = inf;
eps = 1e-7;
epochs = 1e100;
epoch_batch = 1;
error_batch = inf;
for epoch = 1:epochs
prev_error = curr_error;
curr_error = sum((y - (w1.*x + w0)).^2);
w0 = w0 + alpha/q * sum(y - (w1.*x + w0));
w1 = w1 + alpha/q * sum((y - (w1.*x + w0)).*x);
if ((abs(prev_error - curr_error) < eps))
epoch_batch = epoch;
error_batch = abs(prev_error - curr_error);
break;
end
end
w = [w0, w1];
Не могли бы вы сказать мне, где я сделал ошибку, потому что для меня это кажется правильным после нескольких часов попыток.
данные:
x
35680
42514
15162
35298
29800
40255
74532
37464
31030
24843
36172
39552
72545
75352
18031
y
2217
2761
990
2274
1865
2606
4805
2396
1993
1627
2375
2560
4597
4871
1119
Вот код для построения данных:
figure(1)
% plot data points
plot(x, y, 'ro');
hold on;
xlabel('x value');
ylabel('y value');
grid on;
% x vector from min to max data point
x = min(x):max(x);
% calculate y with weights from batch gradient descent
y = (w(1) + w(2)*x);
% plot the regression line
plot(x,y,'r');
Веса для немасштабированного набора данных может быть найден с использованием меньшей скорости обучения alpha = 1e-10
. Однако при масштабировании данных от 0 до 1 у меня все еще есть проблемы, чтобы получить соответствующие веса.
scaled_x =
0.4735
0.5642
0.2012
0.4684
0.3955
0.5342
0.9891
0.4972
0.4118
0.3297
0.4800
0.5249
0.9627
1.0000
0.2393
scaled_y_en =
0.0294
0.0366
0.0131
0.0302
0.0248
0.0346
0.0638
0.0318
0.0264
0.0216
0.0315
0.0340
0.0610
0.0646
0.0149
Можете ли вы дать некоторые выборочные данные для вызова fucntion? –
Я добавил немасштабированные данные, которые приводят к значениям NaN для весов. Масштабирование от 0 до 1 путем деления максимального значения возвращает неверные веса, которые не соответствуют данным. – evolved
Вы пытаетесь минимизировать функцию? –