Я задаю следующий вопрос, как было предложено из моего предыдущего сообщения - Good ROC curve but poor precision-recall curve. Я использую настройку по умолчанию с помощью Python scikit-learn. Похоже, что оптимизация на AUC-ROC, но меня больше интересует оптимизация точности отзыва. Ниже приведены мои коды.Как оптимизировать кривую прецизионного отзыва вместо кривой AUC-ROC в python scikit-learn?
# Get ROC
y_score = classifierUsed2.decision_function(X_test)
false_positive_rate, true_positive_rate, thresholds = roc_curve(y_test, y_score)
roc_auc = auc(false_positive_rate, true_positive_rate)
print 'AUC-'+ethnicity_tar+'=',roc_auc
# Plotting
ax1.plot(false_positive_rate, true_positive_rate, c=color, label=('AUC-'+ethnicity_tar+'= %0.2f'%roc_auc))
ax1.plot([0,1],[0,1], color='lightgrey', linestyle='--')
ax1.legend(loc='lower right', prop={'size':8})
# Get P-R pairs
precision, recall, prThreshold = precision_recall_curve(y_test, y_score)
# Plotting
ax2.plot(recall, precision, c=color, label=ethnicity_tar)
ax2.legend(loc='upper right', prop={'size':8})
Где и как вставлять коды python для изменения настройки, чтобы я мог оптимизировать точность отзыва?